Cho tứ diện ABCD có \(AB,AC,AD\) đôi một vuông góc và \(AB=6a,AC=9a,AD=3a.\) Gọi \(M,N,P\) lần lượt là trọng tâm của các tam giác \(ABC,ACD,ADB.\) Thể tích của khối tứ diện \(AMNP\) bằng
A. \(2{{a}^{3}}.\)
B. \(4{{a}^{3}}.\)
C. \(6{{a}^{3}}.\)
D. \(8{{a}^{3}}.\)
Lời giải của giáo viên
ToanVN.com
.png)
Gọi \(I,F,E\) lần lượt là trung điểm của các cạnh \(BC,CD,BD\)
\(\frac{{{V}_{A.MPN}}}{{{V}_{A.IEF}}}=\frac{AM}{AI}.\frac{AP}{AE}.\frac{AN}{AF}=\frac{2}{3}.\frac{2}{3}.\frac{2}{3}=\frac{8}{27}\Rightarrow {{V}_{A.MPN}}=\frac{8}{27}{{V}_{A.IEF}}\left( 1 \right)\)
\(\Delta BIE=\Delta CIF=\Delta EFD\left( c.c.c \right)\Rightarrow {{S}_{IEF}}=\frac{1}{4}{{S}_{BCD}}\Rightarrow {{V}_{A.IEF}}=\frac{1}{4}{{v}_{ABCD}}\left( 2 \right)\)
Từ (1) và (2) \(\Rightarrow {{V}_{A.MPN}}=\frac{2}{27}.{{V}_{ABCD}}\)
Mặt khác \({{V}_{ABCD}}=\frac{1}{6}AB.AC.AD=\frac{1}{6}.6a.9a.3a=27{{a}^{3}}\Rightarrow {{V}_{A.MPN}}=2{{a}^{3}}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
.png)
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau?
Đồ thị hàm số \(y=\frac{\sqrt{x-7}}{{{x}^{2}}+3x-4}\) có bao nhiêu đường tiệm cận đứng?
Đồ thị hàm số \(y=\frac{2x-1}{x+1}\) có bao nhiêu đường tiệm cận?
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị là đường cong như hình bên. Hỏi phương trình \(f\left( xf\left( x \right) \right)-2=0\) có bao nhiêu nghiệm phân biệt?
.jpg.png)
Tìm giá trị lớn nhất của hàm số \(f\left( x \right)={{x}^{3}}-2{{x}^{2}}-4x+1\) trên đoạn \(\left[ 1;3 \right].\)
Hàm số \(y=\sqrt[3]{{{x}^{2}}}\) có tất cả bao nhiêu điểm cực trị?
Cho hàm số \(y=\frac{ax+b}{cx+d}\) với \(a>0\) có đồ thị như hình bên. Mệnh đề nào sau đây đúng?
.jpg.png)
Nếu các số \(5+m;7+2m;17+m\) theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?
Tìm hệ số của \({{x}^{12}}\) trong khai triển \({{\left( 2x-{{x}^{2}} \right)}^{10}}.\)
Tính tổng các giá trị nguyên của hàm số m trên \(\left[ -20;20 \right]\) để hàm số \(y=\frac{\sin x+m}{\sin x-1}\) nghịch biến trên khoảng \(\left( \frac{\pi }{2};\pi \right).\)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt đáy và \(SA=a\sqrt{2}.\) Thể tích khối chóp đã cho bằng:
Cho hình lập phương ABCD.A'B'C'D', gọi I là trung điểm BB'. Mặt phẳng \(\left( DIC' \right)\) chia khối lập phương thành 2 phần. Tính tỉ số thể tích phần bé chia phần lớn.
Cho a là số thực lớn hơn 1. Khẳng định nào sau đây đúng?
Tìm tất cả các giá trị của a thỏa mãn \(\sqrt[15]{{{a}^{7}}}>\sqrt[5]{{{a}^{2}}}\)


