Lời giải của giáo viên
ToanVN.com
.jpg.png)
Ta có pt: \(f\left( {xf\left( x \right)} \right) - 2 = 0 \Leftrightarrow f\left( {xf\left( x \right)} \right) = 2 \Leftrightarrow \left[ \begin{array}{l} xf\left( x \right) = 0\\ xf\left( x \right) = b \in \left( {0;2} \right)\\ xf\left( x \right) = a \in \left( { - 4; - 2} \right) \end{array} \right.\)
* Xét phương trình: \(xf\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ f\left( x \right) = 0\left( 1 \right) \end{array} \right..\)
Ta thấy đồ thị \(y=f\left( x \right)\) cắt trục hoành tại 1 điểm nên phương trình \(\left( 1 \right)\) có 1 nghiệm \(x={{x}_{2}}<-4.\)
* Xét phương trình: \(xf\left( x \right)=b\Leftrightarrow f\left( x \right)=\frac{b}{x},\left( x\ne 0 \right)\) (vì \(x=0\) phương trình vô nghiệm)
Đặt \(g\left( x \right)=\frac{b}{x}\Rightarrow g'\left( x \right)=\frac{-b}{{{x}^{2}}}<0,\forall x\ne 0.\) Suy ra \(g\left( x \right)=\frac{b}{x}\) nghịch biến trên từng khoảng xác định.
Ta dễ thấy TCĐ: \(x=0,\) TCN: \(y=0.\)
Phác họa đồ thị \(y=g\left( x \right)\) như hình vẽ ta có 2 giao điểm với đồ thị \(y=f\left( x \right),\) suy ra phương trình \(xf\left( x \right)=b\) có 2 nghiệm phân biệt \(x={{x}_{3}};x={{x}_{4}}\)
* Xét phương trình: \(xf\left( x \right)=a\Leftrightarrow f\left( x \right)=\frac{a}{x},\left( x\ne 0 \right)\)(vì \(x=0\) phương trình vô nghiệm)
Đặt \(h\left( x \right)=\frac{a}{x}\Rightarrow h'\left( x \right)=\frac{-a}{{{x}^{2}}}>0,\forall x\ne 0.\) Suy ra \(h\left( x \right)=\frac{a}{x}\) đồng biến trên từng khoảng xác định.
Ta dễ thấy TCĐ: \(x=0,\) TCN: \(y=0.\)
Phác họa đồ thị \(y=h\left( x \right)\) như hình vẽ ta có 2 giao điểm với đồ thị \(y=f\left( x \right)\), suy ra phương trình \(xf\left( x \right)=a\) có 2 nghiệm \(x={{x}_{5}};x={{x}_{6}}.\)
Như vậy \(f\left( xf\left( x \right) \right)-2=0\) có 6 nghiệm phân biệt.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
.png)
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau?
Đồ thị hàm số \(y=\frac{\sqrt{x-7}}{{{x}^{2}}+3x-4}\) có bao nhiêu đường tiệm cận đứng?
Đồ thị hàm số \(y=\frac{2x-1}{x+1}\) có bao nhiêu đường tiệm cận?
Tìm giá trị lớn nhất của hàm số \(f\left( x \right)={{x}^{3}}-2{{x}^{2}}-4x+1\) trên đoạn \(\left[ 1;3 \right].\)
Hàm số \(y=\sqrt[3]{{{x}^{2}}}\) có tất cả bao nhiêu điểm cực trị?
Cho hàm số \(y=\frac{ax+b}{cx+d}\) với \(a>0\) có đồ thị như hình bên. Mệnh đề nào sau đây đúng?
.jpg.png)
Tìm hệ số của \({{x}^{12}}\) trong khai triển \({{\left( 2x-{{x}^{2}} \right)}^{10}}.\)
Tính tổng các giá trị nguyên của hàm số m trên \(\left[ -20;20 \right]\) để hàm số \(y=\frac{\sin x+m}{\sin x-1}\) nghịch biến trên khoảng \(\left( \frac{\pi }{2};\pi \right).\)
Nếu các số \(5+m;7+2m;17+m\) theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt đáy và \(SA=a\sqrt{2}.\) Thể tích khối chóp đã cho bằng:
Cho tứ diện ABCD có \(AB,AC,AD\) đôi một vuông góc và \(AB=6a,AC=9a,AD=3a.\) Gọi \(M,N,P\) lần lượt là trọng tâm của các tam giác \(ABC,ACD,ADB.\) Thể tích của khối tứ diện \(AMNP\) bằng
Cho hình lập phương ABCD.A'B'C'D', gọi I là trung điểm BB'. Mặt phẳng \(\left( DIC' \right)\) chia khối lập phương thành 2 phần. Tính tỉ số thể tích phần bé chia phần lớn.
Tìm tất cả các giá trị của a thỏa mãn \(\sqrt[15]{{{a}^{7}}}>\sqrt[5]{{{a}^{2}}}\)
Cho a là số thực lớn hơn 1. Khẳng định nào sau đây đúng?
.jpg.png)


