Cho tứ diện \(ABCD\) có các mặt \(ABC\) và \(BCD\) là các tam giác đều cạnh \(2,\) hai mặt phẳng \(\left( {ABD} \right)\) và \(\left( {ACD} \right)\) vuông góc với nhau. Tính bán kính mặt cầu ngoại tiếp tứ diện \(ABCD.\)
A. \(2\sqrt 2 \)
B. \(\sqrt 2 \)
C. \(\dfrac{{2\sqrt 3 }}{3}\)
D. \(\dfrac{{\sqrt 6 }}{3}\)
Lời giải của giáo viên
ToanVN.com
Các tam giác đều \(ABC\) và \(BCD\) có cạnh 2
\( \Rightarrow BD = DC = BC = AB = AC = 2\)
Nên tam giác \(CAD\) cân tại \(C\) và tam giác \(BAD\) cân tại \(B.\)
Lấy \(H\) là trung điểm \(AD \Rightarrow CH \bot AD\) (do tam giác \(CAD\) cân tại \(C\))
Ta có \(\left\{ \begin{array}{l}\left( {CAD} \right) \bot \left( {BAD} \right)\\\left( {CAD} \right) \cap \left( {BAD} \right) = AD\\CH \bot AD,\,CH \subset \left( {CAD} \right)\end{array} \right. \Rightarrow CH \bot \left( {BAD} \right) \Rightarrow CH \bot BH\) (1)
Lại có \(\Delta CAD = \Delta BAD\left( {c - c - c} \right)\) nên \(BH = CH\) (2)
Từ (1) và (2) suy ra tam giác \(CHB\) vuông cân tại \(H\) có cạnh huyền \(CB = 2.\).
Suy ra \(B{C^2} = B{H^2} + C{H^2} \Leftrightarrow 2B{H^2} = {2^2} \Rightarrow BH = CH = \sqrt 2 .\)
Xét tam giác \(CAH\) vuông tại \(H\) có \(\cos \widehat {ACH} = \dfrac{{CH}}{{AC}} = \dfrac{{\sqrt 2 }}{2} \Rightarrow \widehat {ACH} = 45^\circ \)
Lại thấy \(CH\) là phân giác của \(\widehat {ACD}\) (vì \(\Delta CAD\) cân tại \(C\)) nên \(\widehat {ACH} = \widehat {HCD} = 45^\circ \Rightarrow \widehat {ACD} = 90^\circ \)
Hay tam giác \(CAD\) vuông cân tại \(C \Rightarrow CH = \dfrac{1}{2}AD = HA = HD\) (3)
Vì \(\Delta CAD = \Delta BAD\left( {c - c - c} \right)\) nên \(\Delta ABD\) vuông cân tại \(B \Rightarrow BH = \dfrac{{AD}}{2} = HD = HA\) (4)
Từ (3) và (4) suy ra \(HA = HB = HC = HD = \sqrt 2 \) hay \(H\) là tâm mặt cầu ngoại tiếp tứ diện \(ABCD\) và bán kính mặt cầu là \(\sqrt 2 \).
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Phương trình \(2f\left( x \right) - 5 = 0\) có bao nhiêu nghiệm âm?
Với \(n\) là số nguyên dương, biểu thức \(T = C_n^0 + C_n^1 + ... + C_n^n\) bằng
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 8\). Tính tổng các giá trị nguyên của \(m\) để phương trình \(f\left( {\left| {x - 1} \right|} \right) + m = 2\) có đúng \(3\) nghiệm phân biệt.
Một khối lăng trụ tứ giác đều có thể tích là \(4\). Nếu gấp đôi các cạnh đáy đồng thời giảm chiều cao của khối lăng trụ này hai lần thì được khối lăng trụ mới có thể tích là:
Tính theo \(a\) thể tích của một khối trụ có bán kính đáy là \(a\), chiều cao bằng \(2a\).
Một khối nón có bán kính đáy bằng \(3\) và góc ở đỉnh bằng \(60^\circ \) thì có thể tích bằng bao nhiêu?
Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Tìm kết luận đúng.
Bảng biến thiên ở hình bên là của một trong bốn hàm số dưới đây. Tìm hàm số đó.
Cho hệ phương trình \(\left\{ \begin{array}{l}{2^{x - y}} - {2^y} + x = 2y\\{2^x} + 1 = \left( {{m^2} + 2} \right){.2^y}.\sqrt {1 - {y^2}} \end{array} \right.\,\,\left( 1 \right)\), \(m\) là tham số. Gọi \(S\) là tập các giá trị nguyên để hệ \(\left( 1 \right)\) có một nghiệm duy nhất. Tập S có bao nhiêu phần tử?
Tập nghiệm của phương trình \({\log _{0,25}}\left( {{x^2} - 3x} \right) = - 1\) là
Hệ số của \({x^5}\) trong khai triển biểu thức \({\left( {x + 3} \right)^8} - {x^2}{\left( {2 - x} \right)^5}\) thành đa thức là:
Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{ - x + 1}}{{3x - 2}}\) tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là
Hình lập phương có độ dài đường chéo là \(6\) thì có thể tích là
Biết \(F\left( x \right) = \left( {a\,{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên \(\mathbb{R}\) . Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right)\) bằng:
Cho tam giác \(ABC\) vuông tại \(A\). Đường thẳng \(d\) đi qua \(A\) và song song với \(BC\). Cạnh \(BC\) quay xung quanh \(d\) tạo thành một mặt xung quanh của hình trụ có thể tích là \({V_1}\). Tam giác \(ABC\) quay xung quanh trục \(d\) được khối tròn xoay có thể tích là \({V_2}\). Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\).


