Câu hỏi Đáp án 3 năm trước 57

Cho tứ diện \(ABCD\) có \(AD \bot \left( {ABC} \right),\;ABC\) có tam giác vuông tại \(B.\) Biết \(BC = 2a,\;\;AB = 2a\sqrt 3 ,\;\;AD = 6a.\) Quay tam giác \(ABC\) và \(ABD\) (bao gồm cả điểm bên trong 2 tam giác) xung quanh đường thẳng \(AB\) ta được hai khối tròn xoay. Thể tích phần chung của 2 khối tròn xoay đó bằng: 

A. \(\dfrac{{5\sqrt 3 \pi {a^3}}}{2}\)

B. \(\dfrac{{3\sqrt 3 \pi {a^3}}}{2}\) 

Đáp án chính xác ✅

C.  \(\dfrac{{64\sqrt 3 \pi {a^3}}}{3}\) 

D. \(\dfrac{{4\sqrt 3 \pi {a^3}}}{2}\) 

Lời giải của giáo viên

verified ToanVN.com

Ta có:

Khối nón \(\left( {{N_1}} \right)\) được sinh bởi \(\Delta ABC\) khi quay quanh \(AB\) có chiều cao \({h_1} = AB\) và bán kính đáy \({R_1} = BC.\)

Khối nón \(\left( {{N_2}} \right)\) được sinh bởi \(\Delta ADB\) khi quay quanh \(AB\) có chiều cao \({h_2} = AB\) và bán kính đáy \({R_2} = AD.\)

Do hai khối nón cùng có chiều cao AB nên hai đáy của hai khối nón nằm trong hai mặt phẳng song song.

Trong mặt phẳng đáy của khối nón \(\left( {{N_1}} \right)\) kẻ đường kính GH // DE. Dễ dàng chứng minh dược DEGH là hình thang cân.

Gọi \(M = AG \cap BE;\,\,N = AH \cap BD\), \(I = AB \cap MN\).

Khi đó phần chung giữa hai khối nón \(\left( {{N_1}} \right)\) và \(\left( {{N_2}} \right)\) là hai khối nón:

+) Khối nón \(\left( {{N_3}} \right)\) đỉnh B, đường cao BI, bán kính đáy IN\( \Rightarrow {V_3} = \dfrac{1}{3}\pi .I{N^2}.BI\)

+) Khối nón \(\left( {{N_4}} \right)\) đỉnh A, đường cao AI, bán kính đáy IN \( \Rightarrow {V_4} = \dfrac{1}{3}\pi I{N^2}.AI\)

\( \Rightarrow \) Thể tích phần chung \(V = {V_3} + {V_4} = \dfrac{1}{3}\pi .I{N^2}.BI + \dfrac{1}{3}\pi I{N^2}.AI = \dfrac{1}{3}\pi I{N^2}\left( {AI + BI} \right) = \dfrac{1}{3}\pi .I{N^2}.AB\)

Áp dụng định lí Ta-lét ta có:

\(\begin{align}\frac{MN}{GH}=\frac{AI}{AB};\,\,\frac{MN}{DE}=\frac{BI}{AB}\Rightarrow \frac{MN}{GH}+\frac{MN}{DE}=\frac{AI+BI}{AB}=1 \\ \Rightarrow MN\left( \frac{1}{2BC}+\frac{1}{2AD} \right)=1\Leftrightarrow MN.\left( \frac{1}{2.2a}+\frac{1}{2.6a} \right)=1\Leftrightarrow MN=3a \\ \end{align}\)

Dễ thấy I là trung điểm của MN \( \Rightarrow IN = \dfrac{{MN}}{2} = \dfrac{{3a}}{2}\).

Vậy \(V = \dfrac{1}{3}\pi .{\left( {\dfrac{{3a}}{2}} \right)^2}.2a\sqrt 3  = \dfrac{{3\sqrt 3 \pi {a^3}}}{2}\).

Chọn B.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y = {\log _{\frac{1}{2}}}\left| x \right|.\) Mệnh đề nào dưới đây là mệnh đề sai? 

Xem lời giải » 3 năm trước 66
Câu 2: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{x{{\left( {\ln x + 2} \right)}^2}}}\). 

Xem lời giải » 3 năm trước 65
Câu 3: Trắc nghiệm

Xác định các hệ số \(a,\;b,\;c\) để đồ thị hàm số \(y = \dfrac{{ax - 1}}{{bx + c}}\) có đồ thị hàm số như hình vẽ bên:  

Xem lời giải » 3 năm trước 65
Câu 4: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(y' = {x^2} - 3x + {m^2} + 5m + 6.\) Tìm tất cả các giá trị của m để hàm số đồng biến trên \(\left( {3;\;5} \right).\) 

Xem lời giải » 3 năm trước 65
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { - 3;0;0} \right);\,\,B\left( {0;0;3} \right);\,\,C\left( {0; - 3;0} \right)\)  và mặt phẳng \(\left( P \right):\,\,x + y + z - 3 = 0\). Tìm trên (P) điểm M sao cho \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  - \overrightarrow {MC} } \right|\) nhỏ nhất. 

Xem lời giải » 3 năm trước 65
Câu 6: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) thỏa mãn \({\left[ {f'\left( x \right)} \right]^2} + f\left( x \right).f''\left( x \right) = {x^3} - 2x\;\;\forall x \in R\) và \(f\left( 0 \right) = f'\left( 0 \right) = 2.\) Tính giá trị của \(T = {f^2}\left( 2 \right).\) 

Xem lời giải » 3 năm trước 65
Câu 7: Trắc nghiệm

Giá trị lớn nhất của hàm số \(y = {x^2} + \dfrac{{16}}{x}\) trên đoạn \(\left[ {\dfrac{3}{2};\;4} \right]\) bằng: 

Xem lời giải » 3 năm trước 64
Câu 8: Trắc nghiệm

Công thức nào sau đây là sai?

Xem lời giải » 3 năm trước 64
Câu 9: Trắc nghiệm

Tìm tất cả các giá trị của tham số \(m\) để phương trình \({\left( {7 - 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} - 1}}\) có đúng bốn nghiệm phân biệt. 

Xem lời giải » 3 năm trước 63
Câu 10: Trắc nghiệm

Một hộp sữa hình trụ có thể tích V  (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng: 

Xem lời giải » 3 năm trước 63
Câu 11: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right) > 0\,\,\forall x \in R\). Tìm tập hợp tất cả các giá trị thực của x để \(f\left( {\dfrac{1}{x}} \right) < f\left( 1 \right)\). 

Xem lời giải » 3 năm trước 63
Câu 12: Trắc nghiệm

Cho x là số thực dương, khai triển nhị thức \({\left( {{x^2} + \dfrac{1}{x}} \right)^{12}}\) ta có hệ số của số hạng chứa \({x^m}\) bằng 792. Giá trị của m là:  

Xem lời giải » 3 năm trước 62
Câu 13: Trắc nghiệm

Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy hình trụ, \(AB = 4a;\,\,AC = 5a\). Tính thể tích khối trụ: 

Xem lời giải » 3 năm trước 62
Câu 14: Trắc nghiệm

Với \(a\) và \(b\) là hai số thực dương, \(a \ne 1.\) Giá trị của \({a^{{{\log }_a}{b^3}}}\) bằng: 

Xem lời giải » 3 năm trước 62
Câu 15: Trắc nghiệm

Tìm tập nghiệm \(S\) của phương trình \({2^{x + 1}} = 4.\) 

Xem lời giải » 3 năm trước 62

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »