Lời giải của giáo viên
ToanVN.com
Ta có:
\(\begin{array}{l}\int\limits_1^5 {\left| {\dfrac{{x - 2}}{{x + 1}}} \right|dx} = - \int\limits_1^2 {\dfrac{{x - 2}}{{x + 1}}} dx + \int\limits_2^5 {\dfrac{{x - 2}}{{x + 1}}dx} \\ = - \int\limits_1^2 {\left( {1 - \dfrac{3}{{x + 1}}} \right)dx} + \int\limits_2^5 {\left( {1 - \dfrac{3}{{x + 1}}} \right)dx} \\ = - \left. {\left( {x - 3\ln \left| {x + 1} \right|} \right)} \right|_1^2 + \left. {\left( {x - 3\ln \left| {x + 1} \right|} \right)} \right|_2^5\\ = - \left( {2 - 3\ln 3 - 1 + 3\ln 2} \right) + \left( {5 - 3\ln 6 - 2 + 3\ln 3} \right)\\ = - 1 + 3\ln 3 - 3\ln 2 + 3 - 3\ln 6 + 3\ln 3\\ = 2 + 3\ln \dfrac{9}{{12}} = 2 + 3\ln \dfrac{3}{4} = 2 + 3\ln 3 - 6\ln 2\\ \Rightarrow \left\{ \begin{array}{l}a = 2\\b = - 6\\c = 3\end{array} \right. \Rightarrow P = abc = - 36\end{array}\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABC có \(SA = \dfrac{{a\sqrt 3 }}{2}\), các cạnh còn lại cùng bằng a. Bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC là:
Phương trình \({4^x} + 1 = {2^x}m.\cos \left( {\pi x} \right)\) có nghiệm duy nhất. Số giá trị của tham số \(m\) thỏa mãn là:
Trong không gian với hệ tọa độ Oxyz cho tam giác ABC biết \(A(2;1;0),B(3;0;2),C(4;3; - 4)\). Viết phương trình đường phân giác trong góc A.
Diện tích mặt cầu ngoại tiếp khối hộp chữ nhật có kích thước: \(a,\,\,\sqrt 3 a,\,\,2a\) là:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) đồng thời thỏa mãn \(f\left( 0 \right) = f\left( 1 \right) = 5\). Tính tích phân\(I = \int\limits_0^1 {f'\left( x \right){e^{f\left( x \right)}}{\rm{d}}x} \).
Đồ thị hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) có hai điểm cực trị A và B. Điểm nào dưới đây thuộc đường thẳng AB ?
Trong không gian với hệ tọa độ Oxyz, hỏi trong các phương trình sau phương trình nào là phương trình của mặt cầu?
Hàm số \(F\left( x \right) = {e^{{x^2}}}\) là nguyên hàm của hàm số nào trong các hàm số sau:
Gọi z1, z2 là các nghiệm của phương trình \({z^2} - 2z + 5 = 0\) . Tính \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) .
Cho đường tròn \((T):{(x - 1)^2} + {(y + 2)^2} = 5\) và hai điểm A(3; -1), B(6; -2). Viết phương trình đường thẳng cắt (T) tại hai điểm C, D sao cho ABCD là hình bình hành.
Tìm tập xác định của hàm số \(y = {({x^2} - 3x + 2)^\pi }\).
Cho số phức z có \(\left| z \right| = 1\). Tìm giá trị lớn nhất của biểu thức \(P = \left| {{z^2} - z} \right| + \left| {{z^2} + z + 1} \right|\) .
Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB = a, \(AD = a\sqrt 3 \), SA vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60o. Tính thể tích V của khối chóp S.ABCD.
Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ?\({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\).
Cho hình hộp \(ABCD.A'B'C'D'\) có \(A'B\) vuông góc với mặt phẳng đáy \(\left( {ABCD} \right)\); góc của \(AA'\) với \(\left( {ABCD} \right)\)bằng \({45^0}\). Khoảng cách từ \(A\) đến các đường thẳng \(BB'\) và \(DD'\) bằng \(1\). Góc của mặt \(\left( {BCC'B'} \right)\) và mặt phẳng \(\left( {CC'D'D} \right)\) bẳng \({60^0}\). Thể tích khối hộp đã cho là:


