Cho tam giác ABC cân tại A, góc \(\angle BAC = 120^\circ \) và AB = 4cm. Tính thể tích khối tròn xoay lớn nhất có thể khi ta quay tam giác ABC xung quanh đường thẳng chứa một cạnh của tam giác ABC.
A. \(16\sqrt 3 \pi \)
B. \(\frac{{16\pi }}{{\sqrt 3 }}\)
C. \(\frac{{16\pi }}{3}\)
D. \(16\pi \)
Lời giải của giáo viên
ToanVN.com
Áp dụng định lí cosin trong tam giác ABC ta có:
\(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos \angle BAC = {4^2} + {4^2} - {2.4^2}\frac{{ - 1}}{2} = {3.4^2} \Rightarrow BC = 4\sqrt 3 \)
+) Gọi H là trung điểm của BC.
Khi quay tam giác ABC quanh cạnh BC ta được 2 hình nón có chung bán kính đáy AH, đường cao lần lượt là BH và CH với
\(AH = AB.\cos 60^\circ = 2,BH = CH = \frac{1}{2}BC = \frac{{4\sqrt 3 }}{2} = 2\sqrt 3 \)
\(\begin{array}{l}
V = \frac{1}{3}\pi A{H^2}.BH + \frac{1}{3}\pi A{H^2}.CH = \frac{1}{3}\pi .A{H^2}\left( {BH + CH} \right)\\
= \frac{1}{3}\pi {2^2}.2\sqrt 3 = \frac{{8\pi \sqrt 3 }}{3}
\end{array}\)
+) Khi quay tam giác ABC quanh AB ta được khối tròn xoay như sau:
.png)
Gọi D là điểm đối xứng C qua AB, H là trung điểm của CD.
\(\begin{array}{l}
\Rightarrow HC = BC.\sin 30^\circ = 4\sqrt 3 .\frac{1}{2} = 2\sqrt 3 \\
BH = BC.\cos 30^\circ = 4\sqrt 3 .\frac{{\sqrt 3 }}{2} = 6\\
\Rightarrow V = \frac{1}{3}\pi H{C^2}.BH - \frac{1}{3}\pi H{C^2}.AH = \frac{1}{3}\pi H{C^2}.AB = \frac{1}{3}\pi {\left( {2\sqrt 3 } \right)^2}.4 = 16\pi
\end{array}\)
+) Do điểm B và C có vai trò như nhau nên khi quay tam giác ABC quanh AC ta cũng nhận được khối tròn xoay có thể tích bằng 16.
Vậy thể tích lớn nhất có thể được khi quay tam giác ABC quanh một đường thẳng chứa cạnh của tam giác ABC là 16π.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính R = 6cm. I, K là 2 điểm trên đoạn OA sao cho OI = IK = KA . Các mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) lần lượt qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính \({r_1},{r_2}\). Tính tỉ số \(\frac{{{r_1}}}{{{r_2}}}\)
Có bao nhiêu giá trị thực của tham số m để phương trình \(\left( {x - 1} \right)\left( {x - 3} \right)\left( {x - m} \right) = 0\) có 3 nghiệm phân biệt lập thành cấp số nhân tăng?
Cho biết \({\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}}\), khẳng định nào sau đây Đúng?
Cho biết \({9^x} - {12^2} = 0\) , tính giá trị biểu thức \(P = \frac{1}{{{3^{ - x - 1}}}} - {8.9^{\frac{{x - 1}}{2}}} + 19\)
Cho đồ thị hàm số y = f(x) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0\) và \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty \). Mệnh đề nào sau đây là mệnh đề đúng?
Cho hàm số \(y = \left| {\frac{{x + 1}}{{x - 3}}} \right|\) có đồ thị là (C) . Khẳng định nào sau đây là sai?
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB// CD), BC = 2a,AB = AD = DC = a với a > 0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x > 0; M khác O và D. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với hai đường thẳng SD và AC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?
Cho hình trụ có bán kính đáy R và độ dài đường sinh là l. Thể tích khối trụ là:
Trong các lăng trụ sau, lăng trụ nào không nội tiếp được trong một mặt cầu?
Cho hàm số \(y = {x^3} + 5x + 7\). Giá trị lớn nhất của hàm số trên đoạn [-5; 0] bằng bao nhiêu?
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \({\left( {\sqrt[3]{3} + \sqrt[5]{5}} \right)^{2019}}\)
Tìm tất cả các giá trị của tham số m để phương trình \(\log _3^23x + {\log _3}x + m - 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng (0; 1)


