Câu hỏi Đáp án 3 năm trước 140

Cho phương trình \(\left( mx-36 \right)\sqrt{2-{{\log }_{3}}x}=0\,\,\,\left( 1 \right).\) Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ -100;100 \right]\) để phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt?

A. 96

Đáp án chính xác ✅

B. 196

C. 97

D. 197

Lời giải của giáo viên

verified ToanVN.com

Điều kiện xác định của phương trình:

\(\begin{array}{l}
\left\{ \begin{array}{l}
x > 0\\
2 - {\log _3}x \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > 0\\
x \le 9
\end{array} \right.\\
 \Leftrightarrow 0 < x \le 9
\end{array}\)

TH1: \(m=0\) phương trình có 1 nghiệm \(x=9\) không thỏa mãn.

TH2: \(m\ne 0\)

Với điều kiện trên ta có

\(\begin{array}{l}
\left( {mx - 36} \right)\sqrt {2 - {{\log }_3}x}  = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
mx - 36 = 0\\
\sqrt {2 - {{\log }_3}x}  = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \frac{{36}}{m}\\
x = 9
\end{array} \right.
\end{array}\)

Phương trình đã cho có 2 nghiệm phân biệt khi và chỉ khi

\(\begin{array}{l}
0 < \frac{{36}}{m} < 9 \Leftrightarrow \left\{ \begin{array}{l}
0 < \frac{{36}}{m}\\
\frac{{36}}{m} < 9
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
m > 0\\
\frac{{36 - 9m}}{m} < 0
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
m > 0\\
\left[ \begin{array}{l}
m < 0\\
m > 4
\end{array} \right.
\end{array} \right. \Leftrightarrow m > 4
\end{array}\)

Do \(m\) thuộc đoạn \(\left[ -100;100 \right]\) nên số giá trị nguyên của \(m\) là \(96\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số y=f(x) có đạo hàm trên R và có đồ thị hàm số f’(x) như hình vẽ bên.

Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(g\left( x \right)=f\left( x \right)-mx\) có đúng hai điểm cực tiểu?

 

Xem lời giải » 3 năm trước 199
Câu 2: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 174
Câu 3: Trắc nghiệm

Cho hình hộp chữ nhật \(ABCD.{A}'{B}'{C}'{D}'\) các đường chéo của các hình chữ nhật \(ABCD\,\,;\,AB{B}'{A}'\,;\,AD{D}'{A}'\) lần lượt là \(\sqrt{5}\,;\,\sqrt{10\,}\,;\sqrt{13}\). Thể tích khối hộp chữ nhật đã cho là

Xem lời giải » 3 năm trước 170
Câu 4: Trắc nghiệm

Cho hình chóp \(D.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\),\(DA\) vuông góc với mặt phẳng đáy. Biết \(AB=3a,BC=4a,AD=5a\). Bán kính mặt cầu ngoại tiếp hình chóp \(D.ABC\) bằng

Xem lời giải » 3 năm trước 169
Câu 5: Trắc nghiệm

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}
{\frac{{2{x^2} - 3x + 1}}{{x - 1}}{\rm{khi}}x \ne 1}\\
{{\rm{2}}a + {\rm{1 khi }}x = 1}
\end{array}} \right.\) Tìm giá trị của tham số a để hàm số \(f\left( x \right)\) liên tục tại \(x=1\).

Xem lời giải » 3 năm trước 165
Câu 6: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=2a,\,\,AD=a\). Hình chiếu của S lên mặt phẳng đáy là trung điểm H của cạnh AB; góc tạo bởi cạnh SC và mặt phẳng đáy là \({{45}^{o}}.\) Thể tíchkhối chóp S.ABCD là

Xem lời giải » 3 năm trước 164
Câu 7: Trắc nghiệm

Cho hình trụ có thiết diện qua trục là một hình vuông, diện tích mỗi mặt đáy bằng \(9\pi \left( c{{m}^{\text{2}}} \right).\)

Tính diện tích xung quanh hình trụ đó.

Xem lời giải » 3 năm trước 163
Câu 8: Trắc nghiệm

Cho hình lăng trụ đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a và cạnh bên bằng 2a. Thể tích của khối lăng trụ đã cho là

Xem lời giải » 3 năm trước 163
Câu 9: Trắc nghiệm

Hàm số nào dưới đây có giá trị nhỏ nhất trên tập xác định?

Xem lời giải » 3 năm trước 163
Câu 10: Trắc nghiệm

Cho hình bát diện đều \(ABCDEF\) như hình vẽ. Tổng số cạnh và mặt của hình bát diện bằng bao nhiêu?

Xem lời giải » 3 năm trước 162
Câu 11: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng xét dấu đạo hàm như sau

Hàm số \(y=f\left( 3-2x \right)\) nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 162
Câu 12: Trắc nghiệm

Cho \(a,\,\,b\) là hai số dương với \(a\ne 1\) thỏa mãn \({{\log }_{a}}b=3.\) Khi đó, giá trị \({{\log }_{b}}\left( \frac{{{a}^{2}}}{b} \right)\) bằng:

Xem lời giải » 3 năm trước 160
Câu 13: Trắc nghiệm

Bất phương trình \({{2}^{2x}}-{{18.2}^{x}}+32\ge 0\) có tập nghiệm là

Xem lời giải » 3 năm trước 160
Câu 14: Trắc nghiệm

Tập tất cả các giá trị của tham số a để hàm số \(y={{\left( a-2 \right)}^{x}}\) nghịch biến trên \(\mathbb{R}\) là:

Xem lời giải » 3 năm trước 160
Câu 15: Trắc nghiệm

Cho hình chóp đều \(S.ABC\) có góc giữa mặt bên và mặt đáy bằng \({{60}^{\text{o}}}\), G là hình chiếu vuông góc của S trên mặt phẳng \(\left( ABC \right)\). Khoảng cách từ G đến SA bằng \(\frac{a}{\sqrt{7}}.\) Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( SAC \right)\). Khi đó, \(\tan \frac{\alpha }{2}\) bằng

Xem lời giải » 3 năm trước 158

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »