Cho nửa đường tròn đường kính AB, điểm C nằm trên nửa đường tròn này sao cho góc BAC bằng 300, đồng thời cho nửa đường tròn đường kính AD (xem hình vẽ). Tính thểt ích V của khối tròn xoay được tạo thành khi quay hình phẳng (H) (phần tô đậm) xung quanh đường thẳng AB, biết rằng AB = 2AD và nửa hình tròn đường kính AB có diện tích bằng \(32\pi \).
.png)
A. \(V = \frac{{874}}{3}\pi \)
B. \(V = \frac{{847}}{3}\pi \)
C. \(V = \frac{{784}}{3}\pi \)
D. \(V = 438\pi \)
Lời giải của giáo viên
ToanVN.com
.png)
Gắn trục tọa độ vào hình vẽ, với \(O \equiv A\) như hình vẽ
Ta có:
\(\frac{1}{2}.\pi .A{D^2} = 32\pi \Rightarrow AD = 8\)
=> PT đường tròn đường kính AB là:
\(\begin{array}{l}
{(x - 8)^2} + {y^2} = 64 \Leftrightarrow {y^2} = 64 - {(x - 8)^2}\\
\Leftrightarrow y = \pm \sqrt {64 - {{(x - 8)}^2}}
\end{array}\)
Ta lấy nửa bên trên => \(y = \sqrt {64 - {{(x - 8)}^2}} \)
=> PT đường tròn đường kính AD là:
\(\begin{array}{l}
{(x - 4)^2} + {y^2} = 16 < = > {y^2} = 16 - {(x - 4)^2}\\
< = > y = \pm \sqrt {16 - {{(x - 4)}^2}}
\end{array}\)
Ta lấy nửa bên trên => \(y = \sqrt {16 - {{(x - 4)}^2}} \)
Phương trình AC: \(y = \tan 30.x = \frac{1}{{\sqrt 3 }}x\)
Hoành độ giao điểm của AC và đường tròn đường kính AD là:
\(\sqrt {16 - {{(x - 4)}^2}} = \frac{1}{{\sqrt 3 }}x = > x = 6\) (lấy x dương)
Hoành độ giao điểm của AC và đường tròn đường kính AB là:
\(\sqrt {64 - {{(x - 8)}^2}} = \frac{1}{{\sqrt 3 }}x = > x = 12\) (lấy x dương)
Ta có:
\(\begin{array}{l}
V = {S_2} + {S_3} = ({S_1} + {S_2}) - {S_1} + {S_3}\\
= \pi \int\limits_6^{12} {\frac{{{x^2}}}{3}dx} - \pi \int\limits_6^8 {{\rm{[}}16 - {{(x - 4)}^2}{\rm{]}}dx} + \pi \int\limits_{12}^{16} {{\rm{[}}64 - {{(x - 8)}^2}{\rm{]}}dx} \\
= \frac{{784}}{3}\pi
\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho \(\overrightarrow {OM} = 3\vec i - 2\vec j + \vec k\). Tìm tọa độ của điểm M.
Cho hàm f(x) có đạo hàm trên đoạn \(\left[ {0;\pi } \right],{\rm{\;}}f(0) = \pi ,{\rm{\;}}\mathop \smallint \limits_0^\pi f'(x)dx = 3\pi \). Tính \(f(\pi )\)
Tìm các giá trị của tham số m để đồ thị hàm số \(y = \frac{{(m - 1)x + m}}{{3x + {m^2}}}\) nhận đường thẳng y = 2 làm tiệm cận ngang
Tìm m để hàm số \(y = {x^4} - 2m{x^2} + {m^2} - 1\) đạt cực tiểu tại \({x_1},{x_2}\) thỏa mãn \({x_1}.{x_2} = - 4\)
Cho hàm số \(f(x) = \frac{a}{{{{\left( {x + 1} \right)}^3}}} + b.x.{e^x}\), biết \(f'\left( 0 \right) = - 22\) và \(\mathop \smallint \limits_0^1 f(x)dx = 5\). Tính S = a + b.
Tìm m để hàm số \(y = \frac{1}{2}\ln ({x^2} + 4) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty , + \infty } \right)\).
Cho 10 điểm phân biệt cùng nằm trên một đường tròn. Số tam giác được tạo thành là
Cho hình lập phương \(ABCD{A_1}{B_1}{C_1}{D_1}\) cạnh a. Gọi M, N, P lần lượt là trung điểm của \(B{B_1},CD,{A_1}{D_1}\). Góc giữa hai đường thẳng MP và C1N bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = 2, các cạnh bên đều bằng 2. Tính thể tích của khối cầu ngoại tiếp hình chóp SABC bằng
Tọa độ tậm của mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 10{\rm{x}} + 2y + 26{\rm{z}} + 170 = 0\) là
Gọi \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\), trong đó \(z_1\) có phần ảo dương. Tìm số phức liên hợp của số phức \(z_1+2z_2\)
Mặt phẳng đi qua điểm A(1;1;1) và vuông góc với hai mặt phẳng \(x + y - z - 2 = 0,{\rm{ }}x - y + z - 1 = 0\) có phương trình là
Tìm các giá trị của tham số m để phương trình \(\frac{{{{\log }_2}(mx)}}{{{{\log }_2}(x + 1)}} = 2\) có nghiệm duy nhất
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 3}}{2} = \frac{{z - 3}}{1}\) và cho mặt phẳng \(\left( P \right):{\rm{ }}2x + y - 2z + 9 = 0\). Tọa độ giao điểm của d và (P) là


