Cho một tấm nhôm hình vuông cạnh \(6cm.\) Người ta muốn cắt một hình thang như hình vẽ. Trong đó \(AE = 2\left( {cm} \right),AH = x\left( {cm} \right),CF = 3\left( {cm} \right),CG = y\left( {cm} \right).\) Tìm tổng \(x + y\) để diện tích hình thang \(EFGH\) đạt giá trị nhỏ nhất.
A. \(x + y = 7.\)
B. \(x + y = 5.\)
C. \(x + y = \dfrac{{7\sqrt 2 }}{2}.\)
D. \(x + y = 4\sqrt 2 \)
Lời giải của giáo viên
ToanVN.com
Ta có \({S_{EFGH}} = {S_{ABCD}} - {S_{AEH}} - {S_{BEF}} - {S_{CFG}} - {S_{DGH}}\)
Mà \({S_{ABCD}} = 6.6 = 36;{S_{BEF}} = \dfrac{1}{2}BE.BF = \dfrac{1}{2}.4.3 = 6\) nên \({S_{EFGH}} = 30 - \left( {{S_{\Delta AEH}} + {S_{\Delta CGF}} + {S_{\Delta DGH}}} \right)\)
Do đó \({S_{EFGH}}\) nhỏ nhất \( \Leftrightarrow S = {S_{\Delta AEH}} + {S_{\Delta CGF}} + {S_{\Delta DGH}}\) lớn nhất.
Ta có: \(S = \dfrac{1}{2}AE.AH + \dfrac{1}{2}CF.CG + \dfrac{1}{2}DG.DH\) \( = x + \dfrac{{3y}}{2} + \dfrac{{\left( {6 - x} \right)\left( {6 - y} \right)}}{2}\)
\( \Rightarrow 2S = 2x + 3y + \left( {6 - x} \right)\left( {6 - y} \right)\) \( = xy - 4x - 3y + 36\) \(\left( 1 \right)\)
Ta có \(EFGH\) là hình thang \( \to \) \(\widehat {AEH} = \widehat {CGF}\)
\( \Rightarrow \Delta AEH~\Delta CGF\)\( \Rightarrow \dfrac{{AE}}{{CG}} = \dfrac{{AH}}{{CF}}\) \( \Rightarrow \dfrac{2}{y} = \dfrac{x}{3} \Rightarrow xy = 6\) \(\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\), suy ra \(2S = 42 - \left( {4x + \dfrac{{18}}{x}} \right)\).
Để \(2S\) lớn nhất khi và chỉ khi \(4x + \dfrac{{18}}{x}\) nhỏ nhất.
Mà \(4x + \dfrac{{18}}{x} \ge 2\sqrt {4x.\dfrac{{18}}{x}} = 12\sqrt 2 .\)
Dấu \('' = ''\) xảy ra \( \Leftrightarrow 4x = \dfrac{{18}}{x} \Leftrightarrow x = \dfrac{{3\sqrt 2 }}{2} \to y = 2\sqrt 2 \).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + \left( {4m - 3} \right)x + 2017\). Tìm giá trị lớn nhất của tham số thực \(m\) để hàm số đã cho đồng biến trên \(\mathbb{R}\).
Cho hình bình hành \(ABCD\) tâm \(O.\) Đẳng thức nào sau đây sai?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh bằng \(4a\). Cạnh bên \(SA = 2a\). Hình chiếu vuông góc của đỉnh \(S\) trên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của \(H\) của đoạn thẳng \(AO\). Tính khoảng cách \(d\) giữa các đường thẳng \(SD\) và \(AB\).
Hệ số của \({x^7}\) trong khai triển của nhị thức Niu tơn \({\left( {3 - x} \right)^9}\) là
Cho hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Với giá trị nào của \(m\) để đường thẳng \(y = - x + m\) cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt?
Đạo hàm của hàm số \(y = \sqrt {4{x^2} + 3x + 1} \) là hàm số nào sau đây ?
Giá trị nhỏ nhất của hàm số \(y = 1 + x + \dfrac{4}{x}\) trên đoạn \(\left[ { - 3; - 1} \right]\) bằng
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(BC = a\), mặt phẳng \(\left( {A'BC} \right)\) tạo với đáy một góc \(30^\circ \) và tam giác \(A'BC\) có diện tích bằng \({a^2}\sqrt 3 \). Tính thể tích khối lăng trụ \(ABC.A'B'C'\).
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2x - 1}}\) . Biết \(F\left( 1 \right) = 2\) . Giá trị của \(F\left( 2 \right)\) là
Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng \(a.\) Tính cosin của góc giữa hai mặt bên không liền kề nhau.
Tập nghiệm \(S\) của bất phương trình \({3^x} < {e^x}\) là
Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a,\) góc giữa mặt bên và đáy bằng \(60^\circ .\) Tính theo \(a\) thể tích khối chóp \(S.ABC.\)
Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\), \(SA \bot \left( {ABCD} \right)\). Mặt phẳng qua \(AB\) cắt \(SC\) và \(SD\) lần lượt tại \(M\) và \(N\) sao cho \(\dfrac{{SM}}{{SC}} = x\). Tìm \(x\) biết \(\dfrac{{{V_{S.ABMN}}}}{{{V_{S.ABCD}}}} = \dfrac{{11}}{{200}}\)
Cho phương trình \(\log _2^2\left( {4x} \right) - {\log _{\sqrt 2 }}\left( {2x} \right) = 5\) . Nghiệm nhỏ nhất của phương trình thuộc khoảng


