Cho hình bình hành \(ABCD\) tâm \(O.\) Đẳng thức nào sau đây sai?
A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \)
B. \(\left| {\overrightarrow {BA} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {DA} + \overrightarrow {DC} } \right|\)
C. \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \)
D. \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AB} + \overrightarrow {CB} \)
Lời giải của giáo viên
ToanVN.com
Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm hai đường chéo \(AC;BD\)
Suy ra \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 ;\,\,\,\overrightarrow {OB} + \overrightarrow {OD} = \overrightarrow 0 \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \) nên A đúng.
+ Lại có \(ABCD\) là hình bình hành nên theo quy tắc hình bình hành ta có
\(\overrightarrow {BA} + \overrightarrow {BC} = \overrightarrow {BD} ;\,\,\,\overrightarrow {DA} + \overrightarrow {DC} = \overrightarrow {DB} \Rightarrow \left| {\overrightarrow {BA} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {DA} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right| = BD\) nên B đúng.
\(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \) (theo quy tắc hình bình hành) nên C đúng.
+ Ta có \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow 0 ;\,\overrightarrow {AB} + \overrightarrow {CB} = \overrightarrow {DC} + \overrightarrow {CB} = \overrightarrow {DB} \Rightarrow \overrightarrow {AB} + \overrightarrow {CD} \ne \overrightarrow {AB} + \overrightarrow {CB} \) nên D sai.
Chọn: D
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + \left( {4m - 3} \right)x + 2017\). Tìm giá trị lớn nhất của tham số thực \(m\) để hàm số đã cho đồng biến trên \(\mathbb{R}\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh bằng \(4a\). Cạnh bên \(SA = 2a\). Hình chiếu vuông góc của đỉnh \(S\) trên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của \(H\) của đoạn thẳng \(AO\). Tính khoảng cách \(d\) giữa các đường thẳng \(SD\) và \(AB\).
Giá trị nhỏ nhất của hàm số \(y = 1 + x + \dfrac{4}{x}\) trên đoạn \(\left[ { - 3; - 1} \right]\) bằng
Hệ số của \({x^7}\) trong khai triển của nhị thức Niu tơn \({\left( {3 - x} \right)^9}\) là
Cho hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Với giá trị nào của \(m\) để đường thẳng \(y = - x + m\) cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt?
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(BC = a\), mặt phẳng \(\left( {A'BC} \right)\) tạo với đáy một góc \(30^\circ \) và tam giác \(A'BC\) có diện tích bằng \({a^2}\sqrt 3 \). Tính thể tích khối lăng trụ \(ABC.A'B'C'\).
Đạo hàm của hàm số \(y = \sqrt {4{x^2} + 3x + 1} \) là hàm số nào sau đây ?
Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng \(a.\) Tính cosin của góc giữa hai mặt bên không liền kề nhau.
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2x - 1}}\) . Biết \(F\left( 1 \right) = 2\) . Giá trị của \(F\left( 2 \right)\) là
Tập nghiệm \(S\) của bất phương trình \({3^x} < {e^x}\) là
Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\), \(SA \bot \left( {ABCD} \right)\). Mặt phẳng qua \(AB\) cắt \(SC\) và \(SD\) lần lượt tại \(M\) và \(N\) sao cho \(\dfrac{{SM}}{{SC}} = x\). Tìm \(x\) biết \(\dfrac{{{V_{S.ABMN}}}}{{{V_{S.ABCD}}}} = \dfrac{{11}}{{200}}\)
Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a,\) góc giữa mặt bên và đáy bằng \(60^\circ .\) Tính theo \(a\) thể tích khối chóp \(S.ABC.\)
Tập xác định của hàm số \(f\left( x \right) = \dfrac{{ - {x^2} + 2x}}{{{x^2} + 1}}\) là tập hợp nào sau đây?
Cho phương trình \(\log _2^2\left( {4x} \right) - {\log _{\sqrt 2 }}\left( {2x} \right) = 5\) . Nghiệm nhỏ nhất của phương trình thuộc khoảng


