Cho lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a, bạnh bên bằng \(\sqrt 2 a\). Gọi M là trung điểm AB. Tính diện tích thiết diện cắt lăng trụ đã cho bởi mặt phẳng (A'C'M)
A. \(\frac{9}{8}{a^2}\)
B. \(\frac{{3\sqrt 2 }}{4}{a^2}\)
C. \(\frac{{3\sqrt {35} }}{{16}}{a^2}\)
D. \(\frac{{7\sqrt 2 }}{{16}}{a^2}\)
Lời giải của giáo viên
ToanVN.com
.png)
Gọi N là trung điểm của BC ta có MN là đường trung bình của tam giác \(ABC \Rightarrow MN//AC\).
Ta có (A'C'M) chứa \(A'C'//AC \Rightarrow \left( {A'C'M} \right)\) cắt ABC theo giao tuyến là đường thẳng qua M và song song với $AC \Rightarrow \left( {A'C'M} \right) \cap \left( {ABC} \right) = MN\).
Vậy thiết diện của hình lăng trụ cắt bởi mặt phẳng (A'C'M) là tứ giác A'C'NM.
Ta có \(MN//AC//A'C' \Rightarrow A'C'NM\) là hình thang.
Xét \(\Delta A'AM\) và \(\Delta C'CN\) có:
\(\begin{array}{l}
A'A = C'C;\angle A'AM = \angle C'CM = {90^0};AM = CN = \frac{a}{2}\\
\Rightarrow \Delta A'AM = \Delta C'CN\,\,\left( {c.g.c} \right) \Rightarrow A'M = C'N
\end{array}\)
Dễ dàng nhận thấy A'M và C'N không song song nên A'C'NM là hình thang cân.
.png)
Có \(A'C' = a;MN = \frac{a}{2}\)
Kẻ \(MH \bot A'C'\,\,\left( {H \in A'C'} \right);NK \bot A'C'\,\,\left( {K \in A'C'} \right)\) ta có MNKH là
hình chữ nhật \( \Rightarrow MN = HK = \frac{a}{2}\)
\( \Rightarrow A'H = C'K = \frac{{A'C' - HK}}{2} = \frac{{a - \frac{a}{2}}}{2} = \frac{a}{4}\)
Xét tam giác vuông A'AM có \(A'M = \sqrt {A'{A^2} + A{M^2}} = \sqrt {2{a^2} + \frac{{{a^2}}}{4}} = \frac{{3a}}{2}\)
Xét tam giác vuông A'MH có \(MH = \sqrt {A'{M^2} - A'{H^2}} = \frac{{9{a^2}}}{4} - \frac{{{a^2}}}{{16}} = \frac{{a\sqrt {35} }}{4}\)
Vậy \({S_{A'C'NM}} = \frac{1}{2}\left( {A'C' + MN} \right).MH = \frac{1}{2}\left( {a + \frac{a}{2}} \right).\frac{{a\sqrt {35} }}{4} = \frac{{3\sqrt {35} {a^2}}}{{16}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối chóp tứ giác SABCD có thể tích V, đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm các cạnh SB, BC, CD, DA. Tính thể tích khối chóp M.CNQP theo V.
Cho hình chóp tứ giác SABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là một tam giác đều và nằm trong một mặt phẳng vuông góc với đáy (ABCD). Tính thể tích khối chóp SABCD.
Tập nghiệm của bất phương trình \(\frac{{\log \left( {{x^2} - 9} \right)}}{{\log \left( {3 - x} \right)}} \le 1\) là:
Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( {8;5; - 11} \right),\,B\left( {5;3; - 4} \right),\,C\left( {1;2; - 6} \right)\) và mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 1} \right)^2} = 9\). Gọi điểm M(a;b;c) là điểm trên (S) sao cho \(\left| {\overrightarrow {MA} - \overrightarrow {MB} - \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất. Hãy tìm \(a+b\)
Cho phương trình \(\frac{{\cos 4x - \cos 2x + 2{{\sin }^2}x}}{{\sin x + \cos x}} = 0\). Tính diện tích đa giác có các đỉnh là các điểm biểu diễn các nghiệm của phương trình trên đường tròn lượng giác.
Cho hàm số \(y = \dfrac{{2x - 2}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Giá trị dương của tham số \(m\) để đường thẳng \(\left( d \right):y = 2x + m\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \(A,B\) sao cho \(AB = \sqrt 5 \) thuộc khoảng nào sau đây?
Cho hàm số \(f(x)\) xác định trên R và thỏa mãn \(\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 16}}{{x - 2}} = 12\). Tính giới hạn
\(\mathop {\lim }\limits_{x \to 2} \frac{{\sqrt[3]{{5f\left( x \right) - 16}} - 4}}{{{x^2} + 2x - 8}}\)
Cho một đa giác đều có 48 đỉnh. Lấy ngẫu nhiên ba đỉnh của đa giác. Tính xác suất để tam giác tạo thành từ ba đỉnh đó là một tam giác nhọn.
Phương trình \(\cos 2x + 2\cos x - 3 = 0\) có bao nhiêu nghiệm trong khoảng \(\left( {0;2019} \right)\)?
Trong không gian với hệ tọa độ Oxyz, gọi \(\left( \alpha \right)\) là mặt phẳng chứa đường thẳng \(d:\frac{{x - 2}}{1} = \frac{{y - 3}}{1} = \frac{z}{2}\) và vuông góc với mặt phẳng \(\left( \beta \right):x + y - 2z + 1 = 0\). Hỏi giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) là:
Cho hình chóp tam giác S.ABC có đáy ABC là một tam giác vuông cân tại B với trọng tâm G, cạnh bên SA tạo với đáy (ABC) một góc \(30^0\). Biết hai mặt phẳng (SBG) và (SCG) cùng vuông góc với mặt phẳng (ABC). Tính cosin của góc giữa hai đường thẳng SA và BC.
Trong không gian Oxyz, cho đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{{z - 3}}{1}\) và điểm \(A\left( {1;0; - 1} \right)\). Gọi \({d_2}\) là đường thẳng đi qua A và có vecto chỉ phương \(\overrightarrow u = \left( {a;1;2} \right)\). Giá trị của a sao cho đường thẳng \({d_1}\) cắt đường thẳng \({d_2}\) là
Cho hàm số \(f(x)\) với bảng biến thiên dưới đây:
Hỏi hàm số \(y = \left| {f\left( {\left| x \right|} \right)} \right|\) có bao nhiêu cực trị?
Cho hai số thực \(a>1, b>1\). Gọi \(x_1, x_2\) là hai nghiệm của phương trình \({a^x}{b^{{x^2} - 1}} = 1\). Trong trường hợp biểu thức \(S = {\left( {\frac{{{x_1}{x_2}}}{{{x_1} + {x_2}}}} \right)^2} - 4{x_1} - 4{x_2}\) đạt giá trị nhỏ nhất, mệnh đề nào sau đây là đúng?


