Cho khối tứ diện ABCD có thể tích là V. Gọi E, F, G lần lượt là trung điểm BC, BD, CD và M, N, P, Q lần lượt là trọng tâm \(\Delta ABC,\Delta ABD,\Delta ACD,\Delta BCD\). Tính thể tích khối tứ diện MNPQ theo V.
.png)
A. \(\frac{V}{9}\)
B. \(\frac{V}{3}\)
C. \(\frac{2V}{9}\)
D. \(\frac{V}{27}\)
Lời giải của giáo viên
ToanVN.com
.png)
Ta có: \(\frac{{AM}}{{AE}} = \frac{{AP}}{{AG}} = \frac{{AN}}{{AF}} = \frac{2}{3} \Rightarrow MP//EG,MN//EF\)
\( \Rightarrow \left( {MNP} \right)//\left( {BCD} \right).\)
Ta có \(\frac{{MN}}{{EG}} = \frac{2}{3} \Rightarrow \frac{{MN}}{{BD}} = \frac{1}{3}\)
Ta có \(\Delta MNP\) đồng dạng với \(\Delta BCD\) theo tỉ số \(\frac{1}{3} \Rightarrow \frac{{{S_{\Delta MNP}}}}{{{S_{\Delta BCD}}}} = \frac{1}{9}\)
Dựng B'C' qua M và song song BC. C'D' qua P và song song với CD.
\( \Rightarrow \left( {MNP} \right) \equiv \left( {B'C'D'} \right)\)
Trong (ABG) gọi \(I = AQ \cap B'P\). Ta có \(\frac{{AB'}}{{AB}} = \frac{{AI}}{{AQ}} = \frac{{AP}}{{AG}} = \frac{2}{3}\).
\(\begin{array}{l}
\frac{{d\left( {Q;\left( {MNP} \right)} \right)}}{{d\left( {A;\left( {MNP} \right)} \right)}} = \frac{{QI}}{{AI}} = \frac{1}{2};\frac{{d\left( {A;\left( {MNP} \right)} \right)}}{{d\left( {A;\left( {BCD} \right)} \right)}} = \frac{{AB'}}{{AB}} = \frac{2}{3}\\
\Rightarrow \frac{{d\left( {Q;\left( {MNP} \right)} \right)}}{{d\left( {A;\left( {BCD} \right)} \right)}} = \frac{1}{2}.\frac{2}{3} = \frac{1}{3}
\end{array}\)
Vậy \(\frac{{{V_{MNPQ}}}}{{{V_{ABCD}}}} = \frac{1}{3}.\frac{1}{9} = \frac{1}{{27}} \Rightarrow {V_{MNPQ}} = \frac{V}{{27}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Bảng biến thiên trong hình vẽ bên là của hàm số nào trong các hàm số sau đây:
Tập nghiệm của phương trình \({\log _3}\left( {{x^2} - 4x + 9} \right) = 2\) là:
Cho hàm số \(y=f(x)\) có đạo hàm trên R là \(f'\left( x \right) = \left( {2x + 1} \right)\left( {x - 3} \right){\left( {x + 5} \right)^4}\). Hàm số đã cho có tất cả bao nhiêu điểm cực trị?
Với \(a, b\) là hai số dương tùy ý thì \(\log \left( {{a^3}{b^2}} \right)\) có giá trị bằng biểu thức nào sau đây?
Khi độ dài cạnh của hình lập phương tăng thêm 2cm thì thể tích của nó tăng thêm 98cm3. Tính độ dài cạnh của hình lập phương.
Cho hàm số \(y=f(x)\) xác định trên R*, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ bên. Chọn khẳng định đúng về đồ thị hàm số.
Hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại \(A,AB = a,AC = 2a\). Hình chiếu vuông góc của A' lên mặt phẳng (ABC) là điểm I thuộc cạnh BC. Tính khoảng cách từ A tới mặt phẳng (A'BC).
.png)
Cho \(\int\limits_0^1 {f\left( x \right)dx = 3,\int\limits_0^1 {g\left( x \right)dx = - 2} } \). Tính giá trị của biểu thức \(I = \int\limits_0^1 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]} dx\).
Số nghiệm nguyên của bất phương trình \({2^{{x^2} + 3x}} \le 16\) là số nào sau đây?
Cho hai số phức \({z_1} = 1 + 2i\) và \({z_2} = 3 - 4i\). Số phức \(2{z_1} + 3{z_2} - {z_1}{z_2}\) là số phức nào sau đây?
Giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \frac{{5x - 3}}{{1 - 2x}}\) bằng số nào sau đây?
Cho hàm số \(f(x)\) có đạo hàm liên tục trên \([0;\pi ]\). Biết \(f\left( 0 \right) = 2e\) và \(f(x)\) luôn thỏa mãn đẳng thức \(f'\left( x \right) + \sin \,xf\left( x \right) = \cos x{e^{coxs}}\,\,\forall x \in \left[ {0;\pi } \right]\). Tính \(I = \int\limits_0^\pi {f\left( x \right)dx} \) (làm tròn đến phần trăm)
Cho hình nón có đường sinh là a, góc giữa đường sinh và đáy là \(\alpha \). Tính diện tích xung quanh của hình nón.
Một khối trụ bán kính đáy là \(a\sqrt 3 \), chiều cao là \(2a\sqrt 3 \). Tính thể tích khối cầu ngoại tiếp khối trụ.
Cho đồ thị hàm số \(f\left( x \right) = 2{x^3} + mx + 3\) cắt trục hoành tại 3 điểm phân biệt có hoành độ \(a, b, c\). Tính giá trị của biểu thức \(P = \frac{1}{{f'\left( a \right)}} + \frac{1}{{f'\left( b \right)}} + \frac{1}{{f'\left( c \right)}}\).


