Cho khối lăng trụ đứng ABCD.A'B'C'D' có đáy là hình thoi cạnh 2a, AA' = 2a, góc giữa B'D và mặt đáy bằng 30o. Thể tích của khối lăng trụ đã cho bằng:
A. \(\frac{{2{a^3}\sqrt 3 }}{3}\)
B. \(2\sqrt 3 {a^3}\)
C. \(4\sqrt 3 {a^3}\)
D. \(\frac{{4{a^3}\sqrt 3 }}{3}\)
Lời giải của giáo viên
ToanVN.com
Vì BD là hình chiếu của B'D trên mặt phẳng (ABCD) nên \(\widehat{{B}'DB}=30{}^\circ \) là góc giữa B'D và mặt đáy \(\Rightarrow BD={B}'B.\cot 30{}^\circ =2a\sqrt{3}\).
Gọi \(O=AC\cap BD\).
Vì ABCD là hình thoi cạnh 2a có \(BD=2a\sqrt{3}\Rightarrow AC=2AO=2\sqrt{A{{B}^{2}}-B{{O}^{2}}}=2\sqrt{4{{a}^{2}}-3{{a}^{2}}}=2a\)
\(\Rightarrow {{S}_{ABCD}}=\frac{1}{2}AC.BD=\frac{1}{2}.2a.2a\sqrt{3}=2{{a}^{2}}\sqrt{3}\)
\(\Rightarrow V=A{A}'.{{S}_{ABCD}}=2a.2{{a}^{2}}\sqrt{3}=4{{a}^{3}}\sqrt{3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \frac{{ax + b}}{{x + c}}\) có đồ thị như hình bên với \(a,b,c \in Z.\) Tính giá trị của biểu thức T = a - 3b + 2c?
.png)
Cho khối hộp chữ nhật có độ dài ba kích thước lần lượt là 4, 6, 8. Thể tích khối hộp chữ nhật đã cho bằng
Trong không gian Oxyz, điểm nào sau đây thuộc đường thẳng đi qua hai điểm A(1;2;-1) và B(-1;1;1)?
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng \(\left( \alpha \right):x - 3y - 2z - 6 = 0\). Vecto nào không phải là vecto pháp tuyến của \((\alpha)\)?
Cho hàm số \(y = - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5\), với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên R?
Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là
Tính môđun số phức nghịch đảo của số phức \(z = {\left( {1 - 2i} \right)^2}\)
Giá trị lớn nhất của hàm số \(y = \sqrt { - {x^2} + 3x + 4} \) là bao nhiêu ?
Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Biết \(SA = a,\;SN = \frac{{a\sqrt 7 }}{2}\), \(\widehat {SCA} = {45^0}\). Tính khoảng cách từ điểm SM tới đường thẳng BC (minh hoạ như hình bên) .
.png)
Trong không gian Oxyz, mặt cầu \((S):{x^2} + {y^2} + {z^2} + 8x - 4y - 6z - 7 = 0\) có tâm và bán kính là:
Có bao nhiêu giá trị nguyên dương của m hàm số \(f\left( x \right) = \frac{1}{3}{x^3} - m{x^2} + \left( {5m + 6} \right)x - 1\) đồng biến trên R.
Cho a, b là các số thực dương thỏa mãn \({\log _4}a + {\log _9}{b^2} = 5\) và \({\log _4}{a^2} + {\log _9}b = 4\). Giá trị ab là:
Cho hình chóp S.ABC có mặt bên SAB là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d từ A đến mặt phẳng (SBC), biết \(BC = a\sqrt3\), AC = 2a.
Cho hàm số \(y = {x^3} + b{x^2} + d\) \(\left( {b,d \in R } \right)\) có đồ thị như hình dưới đây. Mệnh đề nào dưới đây đúng?
.png)
Cho hình chóp S.ABCD có đáy là tam giác vuông tại A, \(AB = 2a\,\,,\,AC = 4a\,\,,\,SA\) vuông góc với mặt phẳng đáy và SA = a( minh hoạ như hình bên). Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng SM và BC bằng
.png)


