Cho khối chóp S.ABCD có đáy là hình bình hành, gọi B ' và D ' theo thứ tự là trung điểm các cạnh SB, SD. Mặt phẳng (AB’D’) cắt cạnh SC tại C’. Tính tỷ số thể tích của hai khối đa diện được chia ra bởi mặt phẳng (AB’D’)
A. \(\dfrac{1}{2}\)
B. \(\dfrac{1}{6}\)
C. \(\dfrac{1}{{12}}\)
D. \(\dfrac{1}{5}\)
Lời giải của giáo viên
ToanVN.com
Gọi O là tâm của hình bình hành ABCD. SO cắt B'D' tại I.
Nối AI cắt SC tại C' nên A, B', C', D' đồng phẳng
Đặt \({V_{S.ABC{\rm{D}}}} = V \Rightarrow {V_{S.AC{\rm{D}}}} = {V_{S.ABC}} = \dfrac{V}{2}\)
Ta có \(\dfrac{{{V_{S.AC'D'}}}}{{{V_{S.AC{\rm{D}}}}}} = \dfrac{{SC'}}{{SC}}.\dfrac{{S{\rm{D}}'}}{{S{\rm{D}}}}\) và \(\dfrac{{{V_{S.AC'B'}}}}{{{V_{S.ACB}}}} = \dfrac{{SC'}}{{SC}}.\dfrac{{SB'}}{{SB}}\)
Do đó \(\dfrac{{{V_{S.AC'B'}}}}{{{V_{S.ACB}}}} + \dfrac{{{V_{S.AC'D'}}}}{{{V_{S.ACD}}}} = \dfrac{{SC'}}{{SC}}\left( {\dfrac{{SB'}}{{SB}} + \dfrac{{SD'}}{{SD}}} \right) = \dfrac{{SC'}}{{SC}}\)
Hay \(\dfrac{{2{V_{S.AC'B'}}}}{V} + \dfrac{{2{V_{S.AC'D'}}}}{V} = \dfrac{{SC'}}{{SC}}\)
\( \Leftrightarrow \dfrac{{2\left( {{V_{S.AC'B'}} + {V_{S.AC'D'}}} \right)}}{V} = \dfrac{{SC'}}{{SC}} \Leftrightarrow \dfrac{{2{V_{S.AB'C'D'}}}}{V} = \dfrac{{SC'}}{{SC}}\)
Do \(B'D' = \dfrac{1}{2}BD \Rightarrow SI = \dfrac{1}{2}SO\).
Xét tam giác \(\Delta SCO\) có \(C',I,A\) thẳng hàng nên áp dụng định lý Me – ne – la – uýt ta có :
\(\dfrac{{C'S}}{{C'C}}.\dfrac{{AC}}{{AO}}.\dfrac{{IO}}{{IS}} = 1 \Leftrightarrow \dfrac{{C'S}}{{C'C}}.2.1 = 1 \Leftrightarrow \dfrac{{C'S}}{{C'C}} = \dfrac{1}{2}\) \( \Rightarrow \dfrac{{SC'}}{{SC}} = \dfrac{1}{3}\)
Vậy \(\dfrac{{2{V_{S.AB'C'D'}}}}{V} = \dfrac{1}{3} \Leftrightarrow {V_{S.AB'C'D'}} = \dfrac{V}{6} \Rightarrow {V_{AB'C'D'BC{\rm{D}}}} = V - \dfrac{V}{6} = \dfrac{{5V}}{6}\)
Hay tỷ số thể tích của hai khối đa diện được chia ra bởi (AB'D') là: \(\dfrac{{{V_{S.AB'C'D'}}}}{{{V_{AB'C'D'BC{\rm{D}}}}}} = \dfrac{V}{6}:\dfrac{{5V}}{6} = \dfrac{1}{5}\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + \left( {4m - 3} \right)x + 2017\). Tìm giá trị lớn nhất của tham số thực \(m\) để hàm số đã cho đồng biến trên \(\mathbb{R}\).
Cho hình bình hành \(ABCD\) tâm \(O.\) Đẳng thức nào sau đây sai?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh bằng \(4a\). Cạnh bên \(SA = 2a\). Hình chiếu vuông góc của đỉnh \(S\) trên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của \(H\) của đoạn thẳng \(AO\). Tính khoảng cách \(d\) giữa các đường thẳng \(SD\) và \(AB\).
Hệ số của \({x^7}\) trong khai triển của nhị thức Niu tơn \({\left( {3 - x} \right)^9}\) là
Cho hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\). Với giá trị nào của \(m\) để đường thẳng \(y = - x + m\) cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt?
Đạo hàm của hàm số \(y = \sqrt {4{x^2} + 3x + 1} \) là hàm số nào sau đây ?
Giá trị nhỏ nhất của hàm số \(y = 1 + x + \dfrac{4}{x}\) trên đoạn \(\left[ { - 3; - 1} \right]\) bằng
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(BC = a\), mặt phẳng \(\left( {A'BC} \right)\) tạo với đáy một góc \(30^\circ \) và tam giác \(A'BC\) có diện tích bằng \({a^2}\sqrt 3 \). Tính thể tích khối lăng trụ \(ABC.A'B'C'\).
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2x - 1}}\) . Biết \(F\left( 1 \right) = 2\) . Giá trị của \(F\left( 2 \right)\) là
Tập nghiệm \(S\) của bất phương trình \({3^x} < {e^x}\) là
Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng \(a.\) Tính cosin của góc giữa hai mặt bên không liền kề nhau.
Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\), \(SA \bot \left( {ABCD} \right)\). Mặt phẳng qua \(AB\) cắt \(SC\) và \(SD\) lần lượt tại \(M\) và \(N\) sao cho \(\dfrac{{SM}}{{SC}} = x\). Tìm \(x\) biết \(\dfrac{{{V_{S.ABMN}}}}{{{V_{S.ABCD}}}} = \dfrac{{11}}{{200}}\)
Giá trị lớn nhất của biểu thức \(P = \dfrac{{\sqrt {{x^2} + 1} }}{{{x^2} + 5}}\) bằng
Cho hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a,\) góc giữa mặt bên và đáy bằng \(60^\circ .\) Tính theo \(a\) thể tích khối chóp \(S.ABC.\)


