Câu hỏi Đáp án 3 năm trước 57

Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo \(a\) thể tích khối chóp \(S.ABC\)  

A. \(V = \dfrac{{{a^3}}}{8}\) 

Đáp án chính xác ✅

B. \(V = \dfrac{{{a^3}\sqrt 3 }}{3}\) 

C. \(V = \dfrac{{{a^3}\sqrt 3 }}{4}\) 

D. \(V = \dfrac{{{a^3}}}{4}\) 

Lời giải của giáo viên

verified ToanVN.com

Gọi \(H\) là trung điểm \(AB \Rightarrow SH \bot AB\) (vì tam giác \(SAB\) đều)

Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\SH \bot AB;SH \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SH \bot \left( {ABC} \right)\)

Tam giác \(ABC\) đều cạnh \(a\) nên \(AB = a \Rightarrow \) tam giác \(SAB\) cũng là tam giác đều cạnh \(a.\)

Vì \(SH\) là đường trung tuyến trong tam giác \(SAB\) đều cạnh \(a\) nên \(SH = \dfrac{{a\sqrt 3 }}{2}\)

Diện tích đáy \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

Thể tích khối chóp \(V = \dfrac{1}{3}SH.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}}}{8}\)

Chọn  A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho \(\int {{{\left( {\dfrac{x}{{x + 1}}} \right)}^2}dx = mx + n\ln \left| {x + 1} \right|}  + \dfrac{p}{{x + 1}} + C\). Giá trị của biểu thức \(m + n + p\) bằng 

Xem lời giải » 3 năm trước 79
Câu 2: Trắc nghiệm

Trong các hàm số dưới đây, hàm số nào đồng biến trên tập \(\mathbb{R}\)? 

Xem lời giải » 3 năm trước 72
Câu 3: Trắc nghiệm

Cho hai hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {3{m^2} + 4m + 5} \right)x + 2019\)  và \(g\left( x \right) = \left( {{m^2} + 2m + 5} \right){x^3} - \left( {2{m^2} + 4m + 9} \right){x^2} - 3x + 2\) (với \(m\) là tham số). Hỏi phương trình \(g\left( {f\left( x \right)} \right) = 0\) có bao nhiêu nghiệm? 

Xem lời giải » 3 năm trước 70
Câu 4: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Tìm giá trị cực đại \({y_{CD}}\) và giá trị cực tiểu \({y_{CT}}\) của hàm số đã cho.

Xem lời giải » 3 năm trước 69
Câu 5: Trắc nghiệm

Có tất cả bao nhiêu giá trị thực của tham số \(m\) để đường thẳng \(d:y = mx + 1\) cắt đồ thị \(\left( C \right):{x^3} - {x^2} + 1\) tại ba điểm \(A;B\left( {0;1} \right);C\) phân biệt sao cho tam giác \(AOC\) vuông tại \(O\left( {0;0} \right)\)? 

Xem lời giải » 3 năm trước 69
Câu 6: Trắc nghiệm

Trong hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y - 3}}{{ - 1}} = \dfrac{{z - 1}}{1}\) cắt mặt phẳng \(\left( P \right):2x - 3y + z - 2 = 0\) tại điểm \(I\left( {a;b;c} \right)\). Khi đó \(a + b + c\) bằng 

Xem lời giải » 3 năm trước 65
Câu 7: Trắc nghiệm

Cho hai số phức \(z,w\) thay đổi thỏa mãn \(\left| z \right| = 3,\left| {z - w} \right| = 1\). Biết tập hợp điểm của số phức \(w\) là hình phẳng \(H\). Tính diện tích \(S\) của hình \(H\). 

Xem lời giải » 3 năm trước 64
Câu 8: Trắc nghiệm

Cho hình chóp \(S.ABC\) có đáy là tam giác ABC vuông cân tại B, \(AB = a,\,\,SA = 2a,\,\,SA \bot \left( {ABC} \right)\). Bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\) là: 

Xem lời giải » 3 năm trước 64
Câu 9: Trắc nghiệm

Trong hệ tọa độ \(Oxyz\), cho điểm \(A\left( {3;5;3} \right)\) và hai mặt phẳng \(\left( P \right):2x + y + 2z - 8 = 0\), \(\left( Q \right):x - 4y + z - 4 = 0\). Viết phương trình đường thẳng \(d\) đi qua \(A\) và song song với cả hai mặt phẳng \(\left( P \right),\left( Q \right)\). 

Xem lời giải » 3 năm trước 63
Câu 10: Trắc nghiệm

Trong hệ tọa độ \(Oxyz\) cho điểm \(A\left( { - 1;1;6} \right)\) và đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\\z = 2t\end{array} \right.\) . Hình chiếu vuông góc của \(A\) trên \(\Delta \) là 

Xem lời giải » 3 năm trước 63
Câu 11: Trắc nghiệm

Trong hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( {1;0;0} \right);B\left( {0; - 1;0} \right);C\left( {0;0;2} \right)\). Phương trình mặt phẳng \(\left( {ABC} \right)\) là 

Xem lời giải » 3 năm trước 63
Câu 12: Trắc nghiệm

Tìm hệ số của số hạng chứa \({x^9}\) trong khai triển nhị thức Newton của biểu thức \({\left( {3 + x} \right)^{11}}\). 

Xem lời giải » 3 năm trước 62
Câu 13: Trắc nghiệm

Trong hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\dfrac{{x - {x_0}}}{a} = \dfrac{{y - {y_0}}}{b} = \dfrac{{z - {z_0}}}{c}\). Điểm \(M\) nằm trên \(\Delta \) thì điểm \(M\) có dạng nào sau đây? 

Xem lời giải » 3 năm trước 61
Câu 14: Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Một hình nón có đỉnh là tâm của hình vuông \(A'B'C'D'\) và có đường tròn đáy ngoại tiếp hình vuông \(ABCD\). Tính diện tích xung quanh của hình nón đó. 

Xem lời giải » 3 năm trước 60
Câu 15: Trắc nghiệm

Cho \(\int\limits_0^1 {\dfrac{{{9^x} + 3m}}{{{9^x} + 3}}dx}  = {m^2} - 1\) . Tính tổng tất cả các giá trị của tham số \(m.\) 

Xem lời giải » 3 năm trước 60

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »