Lời giải của giáo viên
ToanVN.com
Đáp án A : Hàm số \(y = {2^{1 - 3x}}\) có TXĐ :\(D = \mathbb{R}\) và \(y' = - {3.2^{1 - 3x}} < 0\) với \(\forall x \in \mathbb{R}\) nên hàm số nghịch biến trên \(\mathbb{R}\) (loại A)
Đáp án B : Hàm số \(y = {\log _2}\left( {x - 1} \right)\) có TXĐ : \(D = \left( {1; + \infty } \right)\) nên loại B.
Đáp án C: Hàm số \(y = {\log _2}\left( {{2^x} + 1} \right)\) có TXĐ : \(D = \mathbb{R}\) và \(y' = \dfrac{{{2^x}}}{{\left( {{2^x} + 1} \right)\ln 2}} > 0\) với \(\forall x \in \mathbb{R}\) nên hàm số đồng biến trên \(\mathbb{R}\) (chọn C)
Đáp án D : Hàm số \(y = {\log _2}\left( {{x^2} + 1} \right)\) có TXĐ : \(D = \mathbb{R}\) và \(y' = \dfrac{{2x}}{{{x^2} + 1}} > 0\) với \(\forall x \in \left( {0; + \infty } \right)\) nên hàm số chỉ đồng biến trên \(\left( {0; + \infty } \right)\) (loại D)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(\int {{{\left( {\dfrac{x}{{x + 1}}} \right)}^2}dx = mx + n\ln \left| {x + 1} \right|} + \dfrac{p}{{x + 1}} + C\). Giá trị của biểu thức \(m + n + p\) bằng
Cho hai hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {3{m^2} + 4m + 5} \right)x + 2019\) và \(g\left( x \right) = \left( {{m^2} + 2m + 5} \right){x^3} - \left( {2{m^2} + 4m + 9} \right){x^2} - 3x + 2\) (với \(m\) là tham số). Hỏi phương trình \(g\left( {f\left( x \right)} \right) = 0\) có bao nhiêu nghiệm?
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Tìm giá trị cực đại \({y_{CD}}\) và giá trị cực tiểu \({y_{CT}}\) của hàm số đã cho.
Có tất cả bao nhiêu giá trị thực của tham số \(m\) để đường thẳng \(d:y = mx + 1\) cắt đồ thị \(\left( C \right):{x^3} - {x^2} + 1\) tại ba điểm \(A;B\left( {0;1} \right);C\) phân biệt sao cho tam giác \(AOC\) vuông tại \(O\left( {0;0} \right)\)?
Trong hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y - 3}}{{ - 1}} = \dfrac{{z - 1}}{1}\) cắt mặt phẳng \(\left( P \right):2x - 3y + z - 2 = 0\) tại điểm \(I\left( {a;b;c} \right)\). Khi đó \(a + b + c\) bằng
Cho hình chóp \(S.ABC\) có đáy là tam giác ABC vuông cân tại B, \(AB = a,\,\,SA = 2a,\,\,SA \bot \left( {ABC} \right)\). Bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\) là:
Cho hai số phức \(z,w\) thay đổi thỏa mãn \(\left| z \right| = 3,\left| {z - w} \right| = 1\). Biết tập hợp điểm của số phức \(w\) là hình phẳng \(H\). Tính diện tích \(S\) của hình \(H\).
Trong hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( {1;0;0} \right);B\left( {0; - 1;0} \right);C\left( {0;0;2} \right)\). Phương trình mặt phẳng \(\left( {ABC} \right)\) là
Tìm hệ số của số hạng chứa \({x^9}\) trong khai triển nhị thức Newton của biểu thức \({\left( {3 + x} \right)^{11}}\).
Trong hệ tọa độ \(Oxyz\) cho điểm \(A\left( { - 1;1;6} \right)\) và đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\\z = 2t\end{array} \right.\) . Hình chiếu vuông góc của \(A\) trên \(\Delta \) là
Trong hệ tọa độ \(Oxyz\), cho điểm \(A\left( {3;5;3} \right)\) và hai mặt phẳng \(\left( P \right):2x + y + 2z - 8 = 0\), \(\left( Q \right):x - 4y + z - 4 = 0\). Viết phương trình đường thẳng \(d\) đi qua \(A\) và song song với cả hai mặt phẳng \(\left( P \right),\left( Q \right)\).
Đường cong như hình bên là đồ thị của hàm số nào sau đây?
Cho \(\int\limits_0^1 {\dfrac{{{9^x} + 3m}}{{{9^x} + 3}}dx} = {m^2} - 1\) . Tính tổng tất cả các giá trị của tham số \(m.\)
Trong hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\dfrac{{x - {x_0}}}{a} = \dfrac{{y - {y_0}}}{b} = \dfrac{{z - {z_0}}}{c}\). Điểm \(M\) nằm trên \(\Delta \) thì điểm \(M\) có dạng nào sau đây?
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Một hình nón có đỉnh là tâm của hình vuông \(A'B'C'D'\) và có đường tròn đáy ngoại tiếp hình vuông \(ABCD\). Tính diện tích xung quanh của hình nón đó.


