Cho hình thang \(ABCD\) có \(\angle A = \angle B = {90^0},AB = BC = a,\,AD = 2a.\) Tính thể tích khối nón tròn xoay sinh ra khi quay quanh hình thang \(ABCD\) xung quanh trục \(CD\)
A. \(\frac{{7\pi {a^3}}}{{12}}\)
B. \(\frac{{7\sqrt 2 \pi {a^3}}}{{12}}\)
C. \(\frac{{7\sqrt 2 \pi {a^3}}}{6}\)
D. \(\frac{{7\pi {a^3}}}{6}\)
Lời giải của giáo viên
ToanVN.com
Gọi \(A',\,\,B'\) lần lượt các các điểm đối xúng A, B qua CD. H là trung điểm của BB’, ta dễ dàng chứng minh được C là trung điểm của AA’.
Gọi \({V_1}\) là thể tích khối nón có chiều cao CD, bán kính đáy AC.
\({V_2}\) là thể tích khối nón cụt có chiều cao CH, bán kính đáy nhỏ BH, bán kính đáy lớn AC.
\({V_3}\) là thể tích khối nón có chiều cao CH, bán kính đáy BH.
Kẻ \(CK \bot AD\) suy ra \(ABCK\) là hình vuông \( \Rightarrow CK = KD = a\).
Áp dụng định lí Pytago trong tam giác vuông CKD ta có :
\(CD = \sqrt {C{K^2} + K{D^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \).
Áp dụng định lí Pytago trong tam giác vuông ABC ta có :
\(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \).
Tam giác CKD vuông cân tại K \( \Rightarrow \angle KDC = {45^o} \Rightarrow \angle BCH = {45^0} \Rightarrow \Delta BCH\) vuông cân tại H.
\( \Rightarrow BH = CH = \frac{{BC}}{{\sqrt 2 }} = \frac{a}{{\sqrt 2 }}\)
\(\begin{array}{l} \Rightarrow {V_1} = \frac{1}{3}\pi .A{C^2}.CD = \frac{1}{3}\pi {\left( {a\sqrt 2 } \right)^2}a\sqrt 2 = \frac{{2\sqrt 2 \pi {a^3}}}{3}\\\,\,\,\,\,{V_2} = \frac{1}{3}\pi .CH\left( {B{H^2} + A{C^2} + BH.AC} \right) = \frac{1}{3}\pi .\frac{a}{{\sqrt 2 }}\left( {\frac{{{a^2}}}{2} + 2{a^2} + \frac{a}{{\sqrt 2 }}.a\sqrt 2 } \right) = \frac{{7\sqrt 2 \pi {a^2}}}{{12}}\\\,\,\,\,\,{V_3} = \frac{1}{3}\pi .B{H^2}.CH = \frac{1}{3}\pi .\frac{{{a^2}}}{2}.\frac{a}{{\sqrt 2 }} = \frac{{\pi \sqrt 2 {a^3}}}{{12}}\end{array}\)
Vậy thể tích khối tròn xoay sinh ra khi quay hình thang ABCD quanh trục CD là :
\(V = {V_1} + {V_2} - {V_3} = \frac{{2\sqrt 2 \pi {a^3}}}{3} + \frac{{7\sqrt 2 \pi {a^2}}}{{12}} - \frac{{\sqrt 2 \pi {a^2}}}{{12}} = \frac{{7\sqrt 2 \pi {a^3}}}{6}\).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Phương trình \(2f\left( x \right) - 5 = 0\) có bao nhiêu nghiệm âm?
Với \(n\) là số nguyên dương, biểu thức \(T = C_n^0 + C_n^1 + ... + C_n^n\) bằng
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 8\). Tính tổng các giá trị nguyên của \(m\) để phương trình \(f\left( {\left| {x - 1} \right|} \right) + m = 2\) có đúng \(3\) nghiệm phân biệt.
Một khối lăng trụ tứ giác đều có thể tích là \(4\). Nếu gấp đôi các cạnh đáy đồng thời giảm chiều cao của khối lăng trụ này hai lần thì được khối lăng trụ mới có thể tích là:
Tính theo \(a\) thể tích của một khối trụ có bán kính đáy là \(a\), chiều cao bằng \(2a\).
Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Tìm kết luận đúng.
Một khối nón có bán kính đáy bằng \(3\) và góc ở đỉnh bằng \(60^\circ \) thì có thể tích bằng bao nhiêu?
Cho hệ phương trình \(\left\{ \begin{array}{l}{2^{x - y}} - {2^y} + x = 2y\\{2^x} + 1 = \left( {{m^2} + 2} \right){.2^y}.\sqrt {1 - {y^2}} \end{array} \right.\,\,\left( 1 \right)\), \(m\) là tham số. Gọi \(S\) là tập các giá trị nguyên để hệ \(\left( 1 \right)\) có một nghiệm duy nhất. Tập S có bao nhiêu phần tử?
Bảng biến thiên ở hình bên là của một trong bốn hàm số dưới đây. Tìm hàm số đó.
Biết \(F\left( x \right) = \left( {a\,{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên \(\mathbb{R}\) . Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right)\) bằng:
Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{ - x + 1}}{{3x - 2}}\) tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là
Tập nghiệm của phương trình \({\log _{0,25}}\left( {{x^2} - 3x} \right) = - 1\) là
Cho tam giác \(ABC\) vuông tại \(A\). Đường thẳng \(d\) đi qua \(A\) và song song với \(BC\). Cạnh \(BC\) quay xung quanh \(d\) tạo thành một mặt xung quanh của hình trụ có thể tích là \({V_1}\). Tam giác \(ABC\) quay xung quanh trục \(d\) được khối tròn xoay có thể tích là \({V_2}\). Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\).
Hệ số của \({x^5}\) trong khai triển biểu thức \({\left( {x + 3} \right)^8} - {x^2}{\left( {2 - x} \right)^5}\) thành đa thức là:
Hình lập phương có độ dài đường chéo là \(6\) thì có thể tích là


