Lời giải của giáo viên
ToanVN.com
Gọi \(O = AC \cap BD\).
Vì chóp \(S.ABCD\) đều nên \(SO \bot \left( {ABCD} \right)\)
Đặt \(SA = SB = SC = SD = a\)
Tam giác \(SCD\) có:\(SC = SD;\widehat {CSD} = {60^0} \Rightarrow \Delta SCD\)đều\( \Rightarrow CD = SC = SD = a\)
\( \Rightarrow \) Hình vuông \(ABCD\) cạnh \(a \Rightarrow AC = BD = a\sqrt 2 \)\( \Rightarrow OC = \dfrac{1}{2}AC = \dfrac{{a\sqrt 2 }}{2}\)
\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OC \Rightarrow \Delta SOC\) vuông tại O
\( \Rightarrow SO = \sqrt {S{C^2} - O{C^2}} \)
\(\Rightarrow h = \sqrt {{a^2} - \dfrac{{{a^2}}}{2}} = \dfrac{{a\sqrt 2 }}{2}\) \( \Rightarrow a = h\sqrt 2 \)
\( \Rightarrow {S_{ABCD}} = {a^2} = {\left( {h\sqrt 2 } \right)^2} = 2{h^2}\)
Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}} = \dfrac{1}{3}h.2{h^2} = \dfrac{{2{h^3}}}{3}\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số y = sinx là một nguyên hàm của hàm số nào sau đây ?
Phép đối xứng qua mặt phẳng biến một điểm thuộc mặt phẳng đó thành:
Cho hàm số f(x) có đạo hàm trên R. Nếu hàm số f(x) đồng biến trên R thì
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {2 - x} ,\,y = x\) xung quanh trục Ox được tính theo công thức nào sau đây :
Tìm \(I = \int {\left( {2{x^2} - \dfrac{1}{{\sqrt[3]{x}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)\,dx} \) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\).
Xét f(x) là một hàm số liên tục trê đoạn [a ; b], ( với a < b) và F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a ; b]. Mệnh đề nào dưới đây đúng ?
Diện tích hình phẳng giới hạn bởi \(y = \left( {e + 1} \right)x\,,\,\,y = \left( {{e^x} + 1} \right)x\) là:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng ?
Trong các kí hiệu sau, kí hiệu nào không phải của khối đa diện đều?
Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\), điểm \(A\left( {0;0;2} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\) và cắt mặt cầu \(\left( S \right)\) theo thiết diện là hình tròn \(\left( C \right)\)có diện tích nhỏ nhất ?


