Cho hình chóp S.ABCD có đáy là hình thang, AB = 2a, AD = DC = CB = a, SA vuông góc với mặt phẳng đáy và SA = 3a (minh họa như hình bên). Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng SB vad DM bằng
A. \(\frac{3a}{4}\)
B. \(\frac{3a}{2}.\)
C. \(\frac{3\sqrt{13}a}{13}.\)
D. \(\frac{6\sqrt{13}a}{13}.\)
Lời giải của giáo viên
ToanVN.com
Ta có BCDM là hình bình hành (vì CD song song và bằng BM) nên \(DM=BC=\frac{1}{2}AB\) suy ra tam giác ADB vuông tại D. Tương tự tam giác ACB vuông tại C.
Vì \(DM\text{//}CB\Rightarrow DM\text{//}\left( SBC \right)\) \(\Rightarrow d\left( DM,SB \right)=d\left( DM,\left( SBC \right) \right)=d\left( M,\left( SBC \right) \right)=\frac{1}{2}d\left( A,\left( SBC \right) \right)\)
Ta có \(\left\{ \begin{array}{l}
BC \bot AC\\
BC \bot SA
\end{array} \right. \Rightarrow BC \bot \left( {SAC} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAC} \right)\) , do đó gọi H là hình chiếu vuông góc của A lên SC thì \(AH\bot \left( SBC \right)\Rightarrow d\left( A,\left( BC \right) \right)=AH\)
Trong tam giác vuông SAC ta có \(\frac{1}{A{{H}^{2}}}=\frac{1}{S{{A}^{2}}}+\frac{1}{A{{C}^{2}}}=\frac{1}{9{{a}^{2}}}+\frac{1}{3{{a}^{2}}}=\frac{4}{9{{a}^{2}}}\Rightarrow AH=\frac{3a}{2}\)
Vậy\(d\left( SB,DM \right)=\frac{3a}{4}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) liên tục trên R và thỏa mãn \(xf({{x}^{3}})+f(1-{{x}^{2}})=-{{x}^{10}}+{{x}^{6}}-2x,\forall x\in \mathbb{R}\). Khi đó \(\int\limits_{-1}^{0}{f(x)dx}\) bằng
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2; -2; 1) trên mặt phẳng (Oxy) có tọa độ là
Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \(d:\frac{x+1}{-1}=\frac{y-2}{3}=\frac{z-1}{3}\)?
Trong không gian Oxyz , vecto nào dưới đây là một vecto chỉ phương của đường thẳng đi qua hai điểm M(2; 3; -1) và N(4; 5; 3)?
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thực của phương trình 3f(x) – 2 = 0 là
Trong không gian Oxyz, cho các vecto \(\overrightarrow{a}=(1;0;3)\) và \(\overrightarrow{b}=(-2;2;5)\). Tích vô hướng \(\overrightarrow{a}.(\overrightarrow{a}+\overrightarrow{b})\) bằng
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{5{{x}^{2}}-4x-1}{{{x}^{2}}-1}\) là
Cho hàm số \(y=a{{x}^{3}}+3x+d(a,d\in \mathbb{R})\) có đồ thị như hình. Mệnh đề nào dưới đây đúng?
Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(z={{(1+2i)}^{2}}\) là điểm nào dưới đây?
Cho hàm số f(x), bảng xát dấu của f’(x) như sau:
Số điểm cực trị của hàm số đã cho là
Cho khối lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \(BD=\sqrt{3}a\) và AA’ = 4a (minh họa như hình bên). Thể tích của khối lăng trụ đã cho bằng
Cho hàm số y = f(x) có bằng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
Nếu \(\int\limits_{1}^{2}{f(x)}dx=-2\) và \(\int\limits_{2}^{3}{f(x)}dx=1\) thì \(\int\limits_{1}^{3}{f(x)}dx\) bằng
Cho khối lập phương có cạnh bằng 6. Thể tích của khối lập phương đã cho bằng


