Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc \(\widehat{ABC}={{60}^{0}},SA=SB=SC\). Góc giữa hai mặt phẳng \(\left( SAC \right)\) và \(\left( ABCD \right)\) bằng \({{30}^{0}}\). Thể tích khối chóp S.ABCD bằng
A. \(\frac{{{a^3}\sqrt 3 }}{9}\)
B. \(\frac{{{a^3}\sqrt 3 }}{{18}}\)
C. \(\frac{{{a^3}\sqrt 3 }}{{24}}\)
D. \(\frac{{{a^3}\sqrt 3 }}{{15}}\)
Lời giải của giáo viên
ToanVN.com
.png)
Ta có \(\Delta ABC\) đều.
Gọi H là hình chiếu vuông góc của S lên mặt phẳng \(\left( ABCD \right)\)
Vì SA=SB=SC suy ra H là tâm đường tròn ngoại tiếp \(\Delta ABC\).
Ta có \(\left\{ \begin{array}{l} \left( {SAC} \right) \cap \left( {ABCD} \right) = AC\\ SO \bot AC\\ HO \bot AC \end{array} \right. \Rightarrow \left( {\left( {SAC} \right),\left( {ABCD} \right)} \right) = \left( {SO,HO} \right) = \widehat {SOH} = {30^0}\)
\(BO = \frac{{a\sqrt 3 }}{2} \Rightarrow HO = \frac{2}{3}BO = \frac{{a\sqrt 3 }}{3}\)
\(\tan {30^0} = \frac{{SH}}{{HO}} \Rightarrow SH = HO.\tan {30^0} = \frac{a}{3}\)
\({S_{ABCD}} = 2{S_{ABC}} = \frac{{{a^2}\sqrt 3 }}{2}\)
\({V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SH = \frac{{{a^3}\sqrt 3 }}{{18}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính đường cao h của hình chóp tứ giác đều có cạnh đáy bằng 2a, cạnh bên bằng 3a.
Trong không gian Oxyz cho mặt cầu (S) có tâm I(-1;4;2) và đi qua điểm \(A\left( 1;2;3 \right).\) Khi đó phương trình của mặt cầu (S) là:
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {{x^2} - 3x + 1}&{khi}&{x \ge 1}\\ {1 + 2x}&{khi}&{x < 1} \end{array}} \right.\).
Tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {f({{\cos }^2}x)\sin 2xdx} + 2\int\limits_0^1 {f(3 - 2x)} dx\) bằng
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với \({{u}_{2}}=8\), công sai d=-2. Số hạng đầu của cấp số cộng đã cho bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Hàm số nào dưới đây đồng biến trên khoảng \(\left( -\infty ;+\infty \right)\)?
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và có xét dấu của \({f}'\left( x \right)\) như sau:
.png)
Hàm số đã cho có mấy điểm đại?
Với a là số thực dương tùy ý \({a^2}\sqrt {{a^3}} \) bằng
Tìm nghiệm của bất phương trình: \({\left( {0,5} \right)^{{x^2} - 3x}} < 4\)
Cho số phức \(z=a+bi,\left( a,b\in \mathbb{R} \right)\) thỏa mãn điều kiện \(\left| z-3-4i \right|=\sqrt{5}\). Tính giá trị biểu thức P=a+b khi \(\left| z+1-3i \right|+\left| z-1+i \right|\) đạt giá trị lớn nhất.
Trong không gian Oxyz cho đường thẳng \(\Delta :\frac{x}{2}=\frac{y-1}{1}=\frac{z+2}{-1}\) và mặt phẳng \(\left( P \right):2x-2y-z+3=0\). Đường thẳng nằm trong \(\left( P \right)\) đồng thời cắt và vuông góc với \(\Delta \) có phương trình là
Cho hàm số \(y=\left( x-2 \right)\left( {{x}^{2}}+4 \right)\) có đồ thị \(\left( C \right).\) Mệnh đề nào sau đây là đúng?
Thể tích hình chóp có chiều cao là h, diện tích đáy là B bằng


