Cho hình chóp \(S.ABC\) có đáy ABC là tam giác vuông cân tại \(A,AB=AC=2a,\) hình chiếu vuông góc của đỉnh \(S\) lên mặt phẳng \(\left( ABC \right)\) trùng với trung điểm H của cạnh AB. Biết \(SH=a,\) khoảng cách giữa 2 đường thẳng \(SA\) và BC là
A. \(\frac{a\sqrt{3}}{3}.\)
B. \(\frac{2a}{\sqrt{3}}.\)
C. \(\frac{4a}{\sqrt{3}}.\)
D. \(\frac{a\sqrt{3}}{2}.\)
Lời giải của giáo viên
ToanVN.com
.png)
Dựng hình bình hành ACBE.
Ta có \(BC//AE\Rightarrow BC//\left( SAE \right)\Rightarrow d\left( BC,SA \right)=d\left( BC,\left( SAE \right) \right)=2d\left( H,\left( SAE \right) \right).\)
Gọi M,N lần lượt là trung điểm của AE,AM,K là hình chiếu của H trên \(SN.\)
\(\Delta ABE\) vuông cân tại \(B\Rightarrow BM\bot AE\Rightarrow HN\bot AE.\) Mà \(SH\bot AE\Rightarrow HK\bot AE.\)
Mặt khác \(HK\bot SN\Rightarrow HK\bot \left( SAE \right)\Rightarrow d\left( H,\left( SAE \right) \right)=HK.\)
Ta có \(\frac{1}{H{{K}^{2}}}=\frac{1}{S{{H}^{2}}}+\frac{1}{H{{N}^{2}}}=\frac{1}{{{a}^{2}}}+\frac{1}{{{\left( \frac{a\sqrt{2}}{2} \right)}^{2}}}=\frac{3}{{{a}^{2}}}\Rightarrow HK=\frac{a}{\sqrt{3}}.\) Do đó \(d\left( BC,SA \right)=\frac{2a}{\sqrt{3}}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}+1.\) Khẳng định nào sau đây đúng?
Tìm tất cả các giá trị thực của tham số m để hàm số \(y={{x}^{3}}+{{x}^{2}}+mx+1\) đồng biến trên \(\left( -\infty ;+\infty \right).\)
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}\left( x-9 \right){{\left( x-4 \right)}^{2}}.\) Khi đó hàm số \(y=f\left( {{x}^{2}} \right)\) nghịch biến trên khoảng nào?
Cho hình chóp tam giác \(S.ABC\) với \(SA,SB,SC\) đôi một vuông góc và \(SA=SB=SC=a.\) Tính thể tích của khối chóp \(S.ABC.\)
Cho hàm số \(y=f\left( x \right)\) có đồ thị \(f'\left( x \right)\) như hình vẽ
.jpg.png)
Hàm số \(y=f\left( 1-x \right)+\frac{{{x}^{2}}}{2}-x\) nghịch biến trên khoảng
Cho hàm số \(y={{x}^{3}}-3x\) có đồ thị như hình vẽ bên. Phương trình \(\left| {{x}^{3}}-3x \right|={{m}^{2}}+m\) có 6 nghiệm phân biệt khi và chỉ khi:
.jpg.png)
Tìm giá trị nhỏ nhất \(m\) của hàm số: \(y={{x}^{2}}+\frac{2}{x}\) trên đoạn \(\left[ \frac{1}{2};2 \right].\)
Tập xác định của hàm số \({{\left( {{x}^{2}}-3x+2 \right)}^{\pi }}\) là
Giải phương trình \({{\log }_{3}}\left( 2x-1 \right)=1\)
Số cách chọn 5 học sinh trong một lớp có 25 học sinh nam và 16 học sinh nữ là
Tìm tất cả giá trị của tham số m để phương trình \({{x}^{3}}-3{{x}^{2}}-{{m}^{3}}+3{{m}^{2}}=0\) có ba nghiệm phân biệt?
Tìm tất cả các giá trị thực của tham số a để biểu thức \(B={{\log }_{3}}\left( 2-a \right)\) có nghĩa
Phương trình \({{\left( \frac{1}{3} \right)}^{{{x}^{2}}-2x-3}}={{3}^{x+1}}\) có bao nhiêu nghiệm?
Tập xác định của phương trình \(\sqrt{x-1}+\sqrt{x-2}=\sqrt{x-3}\) là
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Mệnh đề nào dưới đây đúng?


