Cho hình chóp \(S.ABC\) có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của \(S\) lên \(\left( ABC \right)\) trùng với trung điểm của cạnh BC. Biết tam giác \(SBC\) là tam giác đều. Số đo của góc giữa \(SA\) và \(\left( ABC \right)\) bằng
A. \({{75}^{0}}.\)
B. \({{45}^{0}}.\)
C. \({{30}^{0}}.\)
D. \({{60}^{0}}.\)
Lời giải của giáo viên
ToanVN.com
.png)
Ta có: hình chiếu của \(SA\) trên \(\left( ABC \right)\) là AH nên \(\left( \widehat{SA;\left( ABC \right)} \right)=\widehat{\left( SA;AH \right)}=\widehat{SAH}\)
Xét tam giác vuông \(SAH\) ta có: \(AH=\frac{a\sqrt{3}}{2};SA=a\)
Khi đó: \(AH=\frac{a\sqrt{3}}{2};\cos \left( \widehat{SAH} \right)=\frac{AH}{SA}=\frac{\sqrt{3}}{2}\Rightarrow \widehat{SAH}={{30}^{0}}.\)
Vậy góc giữa \(SA\) và \(\left( ABC \right)\) bằng \({{30}^{0}}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}+1.\) Khẳng định nào sau đây đúng?
Tìm tất cả các giá trị thực của tham số m để hàm số \(y={{x}^{3}}+{{x}^{2}}+mx+1\) đồng biến trên \(\left( -\infty ;+\infty \right).\)
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}\left( x-9 \right){{\left( x-4 \right)}^{2}}.\) Khi đó hàm số \(y=f\left( {{x}^{2}} \right)\) nghịch biến trên khoảng nào?
Cho hình chóp tam giác \(S.ABC\) với \(SA,SB,SC\) đôi một vuông góc và \(SA=SB=SC=a.\) Tính thể tích của khối chóp \(S.ABC.\)
Cho hàm số \(y=f\left( x \right)\) có đồ thị \(f'\left( x \right)\) như hình vẽ
.jpg.png)
Hàm số \(y=f\left( 1-x \right)+\frac{{{x}^{2}}}{2}-x\) nghịch biến trên khoảng
Cho hàm số \(y={{x}^{3}}-3x\) có đồ thị như hình vẽ bên. Phương trình \(\left| {{x}^{3}}-3x \right|={{m}^{2}}+m\) có 6 nghiệm phân biệt khi và chỉ khi:
.jpg.png)
Tìm giá trị nhỏ nhất \(m\) của hàm số: \(y={{x}^{2}}+\frac{2}{x}\) trên đoạn \(\left[ \frac{1}{2};2 \right].\)
Tập xác định của hàm số \({{\left( {{x}^{2}}-3x+2 \right)}^{\pi }}\) là
Số cách chọn 5 học sinh trong một lớp có 25 học sinh nam và 16 học sinh nữ là
Giải phương trình \({{\log }_{3}}\left( 2x-1 \right)=1\)
Tìm tất cả giá trị của tham số m để phương trình \({{x}^{3}}-3{{x}^{2}}-{{m}^{3}}+3{{m}^{2}}=0\) có ba nghiệm phân biệt?
Tìm tất cả các giá trị thực của tham số a để biểu thức \(B={{\log }_{3}}\left( 2-a \right)\) có nghĩa
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Mệnh đề nào dưới đây đúng?
Tập xác định của phương trình \(\sqrt{x-1}+\sqrt{x-2}=\sqrt{x-3}\) là
Tập nghiệm \(S\) của phương trình \(\sqrt{2x-3}=x-3\) là:


