Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a.\) Tam giác \(SAB\) đều và nằm trong một mặt phẳng vuông góc với đáy. Gọi \(H,\,K\) lần lượt là trung điểm của các cạnh \(AB\) và \(AD\). Tính sin của góc tạo bởi giữa đường thẳng \(SA\) và mặt phẳng \(\left( {SHK} \right)\)
A. \(\frac{{\sqrt 2 }}{2}\)
B. \(\frac{{\sqrt 2 }}{4}\)
C. \(\frac{{\sqrt 7 }}{4}\)
D. \(\frac{{\sqrt {14} }}{4}\)
Lời giải của giáo viên
ToanVN.com
\(\Delta SAB\) đều \( \Rightarrow SH \bot AB \Rightarrow SH \bot \left( {ABCD} \right)\).
Gọi \(I = AC \cap HK\)
Do ABCD là hình vuông \( \Rightarrow AC \bot BD\).
Mà \(HK//BD\) (HK là đường trung bình của tam giác \(ABD\))
\( \Rightarrow AC \bot HK \Rightarrow AI \bot HK\).
Ta có \(\left\{ \begin{array}{l}AI \bot HK\\AI \bot SH\,\,\left( {SH \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow AI \bot \left( {SHK} \right) \Rightarrow SI\) là hình chiếu của \(SA\) lên \(\left( {SHK} \right)\).
\( \Rightarrow \angle \left( {SA;\left( {SHK} \right)} \right) = \angle \left( {SA;SI} \right) = \angle ISA\).
Gọi \(O = AC \cap BD\), áp dụng định lí Ta-lét ta có : \(\frac{{AI}}{{OA}} = \frac{{AH}}{{AB}} = \frac{1}{2} \Rightarrow AI = \frac{1}{2}OA = \frac{1}{4}AC = \frac{{a\sqrt 2 }}{4}\).
Tam giác SIA vuông tại I \( \Rightarrow \sin \angle ISA = \frac{{AI}}{{SA}} = \frac{{\frac{{a\sqrt 2 }}{4}}}{a} = \frac{{\sqrt 2 }}{4}\).
Vậy \(\sin \angle \left( {SA;\left( {SHK} \right)} \right) = \frac{{\sqrt 2 }}{4}\).
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Phương trình \(2f\left( x \right) - 5 = 0\) có bao nhiêu nghiệm âm?
Với \(n\) là số nguyên dương, biểu thức \(T = C_n^0 + C_n^1 + ... + C_n^n\) bằng
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 8\). Tính tổng các giá trị nguyên của \(m\) để phương trình \(f\left( {\left| {x - 1} \right|} \right) + m = 2\) có đúng \(3\) nghiệm phân biệt.
Một khối lăng trụ tứ giác đều có thể tích là \(4\). Nếu gấp đôi các cạnh đáy đồng thời giảm chiều cao của khối lăng trụ này hai lần thì được khối lăng trụ mới có thể tích là:
Tính theo \(a\) thể tích của một khối trụ có bán kính đáy là \(a\), chiều cao bằng \(2a\).
Một khối nón có bán kính đáy bằng \(3\) và góc ở đỉnh bằng \(60^\circ \) thì có thể tích bằng bao nhiêu?
Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Tìm kết luận đúng.
Cho hệ phương trình \(\left\{ \begin{array}{l}{2^{x - y}} - {2^y} + x = 2y\\{2^x} + 1 = \left( {{m^2} + 2} \right){.2^y}.\sqrt {1 - {y^2}} \end{array} \right.\,\,\left( 1 \right)\), \(m\) là tham số. Gọi \(S\) là tập các giá trị nguyên để hệ \(\left( 1 \right)\) có một nghiệm duy nhất. Tập S có bao nhiêu phần tử?
Bảng biến thiên ở hình bên là của một trong bốn hàm số dưới đây. Tìm hàm số đó.
Cho tam giác \(ABC\) vuông tại \(A\). Đường thẳng \(d\) đi qua \(A\) và song song với \(BC\). Cạnh \(BC\) quay xung quanh \(d\) tạo thành một mặt xung quanh của hình trụ có thể tích là \({V_1}\). Tam giác \(ABC\) quay xung quanh trục \(d\) được khối tròn xoay có thể tích là \({V_2}\). Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\).
Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{ - x + 1}}{{3x - 2}}\) tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là
Biết \(F\left( x \right) = \left( {a\,{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên \(\mathbb{R}\) . Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right)\) bằng:
Tập nghiệm của phương trình \({\log _{0,25}}\left( {{x^2} - 3x} \right) = - 1\) là
Hệ số của \({x^5}\) trong khai triển biểu thức \({\left( {x + 3} \right)^8} - {x^2}{\left( {2 - x} \right)^5}\) thành đa thức là:
Hình lập phương có độ dài đường chéo là \(6\) thì có thể tích là


