Cho hình chóp \(S.\,ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\) và \(\widehat {ABC} = 60^\circ \). Hình chiếu vuông góc của điểm \(S\) lên mặt phẳng \(\left( {ABCD} \right)\) trùng với trọng tâm tam giác \(ABC\). Gọi \(\varphi \) là góc giữa đường thẳng \(SB\) với mặt phẳng \(\left( {SCD} \right)\), tính \(\sin \varphi \) biết rằng \(SB = a\).
A. \(\sin \varphi = \dfrac{1}{4}\).
B. \(\sin \varphi = \dfrac{1}{2}\).
C. \(\sin \varphi = \dfrac{{\sqrt 3 }}{2}\).
D. \(\sin \varphi = \dfrac{{\sqrt 2 }}{2}\).
Lời giải của giáo viên
ToanVN.com
Gọi \(M\) là trung điểm của \(SD\), nhận xét góc giữa \(SB\) và \(\left( {SCD} \right)\) cũng bằng góc giữa \(OM\) và \(\left( {SCD} \right)\) (Vì \(OM//SB\))
Gọi \(H\) là hình chiếu của \(O\) trên \(\left( {SCD} \right)\) \( \Rightarrow \widehat {\left( {OM,\left( {SCD} \right)} \right)} = \widehat {\left( {OM,MH} \right)} = \widehat {OMH}\).
Trong \(\left( {SBD} \right)\) kẻ \(OE//SH\), khi đó tứ diện \(OECD\) là tứ diện vuông nên \(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{C^2}}} + \dfrac{1}{{O{D^2}}} + \dfrac{1}{{O{E^2}}}\).
Ta dễ dàng tính được \(OC = \dfrac{a}{2},OD = \dfrac{{a\sqrt 3 }}{2}\).
Lại có: \(\dfrac{{OE}}{{SH}} = \dfrac{{OD}}{{HD}} = \dfrac{3}{4} \Rightarrow OE = \dfrac{3}{4}SH\), mà \(SH = \sqrt {S{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}} = \dfrac{{a\sqrt 6 }}{3}\)
Do đó \(OE = \dfrac{3}{4}SH = \dfrac{3}{4}.\dfrac{{a\sqrt 6 }}{3} = \dfrac{{a\sqrt 6 }}{4}\).
Suy ra \(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{{{\left( {a/2} \right)}^2}}} + \dfrac{1}{{{{\left( {a\sqrt 3 /2} \right)}^2}}} + \dfrac{1}{{{{\left( {a\sqrt 6 /4} \right)}^2}}} = \dfrac{8}{{{a^2}}} \Rightarrow OH = \dfrac{{a\sqrt 2 }}{4}\).
Tam giác \(OMH\) vuông tại \(H\) có \(OM = \dfrac{1}{2}SB = \dfrac{a}{2},OH = \dfrac{{a\sqrt 2 }}{4} \Rightarrow \sin \widehat {OMH} = \dfrac{{OH}}{{OM}} = \dfrac{{\sqrt 2 }}{2}\).
Vậy \(\sin \varphi = \dfrac{{\sqrt 2 }}{2}\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = 27 + \cos x\) và \(f\left( 0 \right) = 2019\). Mệnh đề nào dưới đây đúng?
Tính thể tích của khối lập phương ABCD.A’B’C’D’ cạnh a.
Cho hình chóp \(S.\,ABC\) có \(AB = AC = 4,\,BC = 2,\,SA = 4\sqrt 3 \), . Tính thể tích khối chóp \(S.\,ABC.\)
Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh bằng \(4\pi \). Thể tích khối trụ là
Đạo hàm của hàm số \(y = \sin \,x + {\log _3}{x^3}\,\,\left( {x > 0} \right)\) là
Cho \({\log _3}x = 3{\log _3}2\). Khi đó giá trị của x là
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:
Có bao nhiêu điểm thuộc đồ thị \(\left( C \right)\) của hàm số \(y = \dfrac{2}{{{x^2} + 2x + 2}}\) có hoành độ và tung độ đều là số nguyên?
Hỏi có bao nhiêu giá trị m nguyên trong \(\left[ { - 2017;2017} \right]\) để phương trình \(\log \left( {mx} \right) = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?
Tìm tọa độ điểm M trên trục Ox cách đều hai điểm \(A\left( {1;2; - 1} \right)\) và điểm \(B\left( {2;1;2} \right)\).
Xét một bảng ô vuông gồm \(4 \times 4\) ô vuông. Người ta điền vào mỗi ô vuông một trong hai số 1 hoặc -1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách điền số?
Cho hàm số \(y = \left| {{{\sin }^3}x - m.\sin \,x + 1} \right|\). Gọi S là tập hợp tất cả các số tự nhiên m sao cho hàm số đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\). Tính số phần tử của S?
Hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + 2\) đạt cực tiểu tại điểm \(x = 1\) và \(f\left( 1 \right) = - 3\). Tính \(b + 2a\).
Tính thể tích V của khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao \(h = 4\).
Nếu \(\int {f\left( x \right)} dx = \dfrac{{{x^3}}}{3} + {e^x} + C\) thì \(f\left( x \right)\) bằng


