Cho hàm số \(y = {x^3} - 3{x^2} + 4\) có đồ thị \(\left( C \right)\) như hình vẽ bên và đường thẳng \(d:y = {m^3} - 3{m^2} + 4\) (với \(m\) là tham số). Hỏi có bao nhiêu giá trị nguyên của tham số \(m\) để đường thẳng \(d\) cắt đồ thị \(\left( C \right)\) tại ba điểm phân biệt?
A. 3
B. 2
C. 1
D. Vô số
Lời giải của giáo viên
ToanVN.com
Từ đồ thị hàm số ta thấy rằng đường thẳng \(d:y = {m^3} - 3{m^2} + 4\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2} + 4\) tại ba điểm phân biệt \( \Leftrightarrow 0 < {m^3} - 3{m^2} + 4 < 4 \Leftrightarrow \left\{ \begin{array}{l}\left( {m + 1} \right){\left( {m - 2} \right)^2} > 0\\{m^3} - 3{m^2} < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > - 1\\m < 3\\m \ne 0\\m \ne 2\end{array} \right.\)
\( \Rightarrow m \in \left( { - 1;3} \right)\backslash \left\{ {0;2} \right\}\) mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ 1 \right\}\)
Vậy có một giá trị của \(m\) thỏa mãn điều kiện.
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(\int {{{\left( {\dfrac{x}{{x + 1}}} \right)}^2}dx = mx + n\ln \left| {x + 1} \right|} + \dfrac{p}{{x + 1}} + C\). Giá trị của biểu thức \(m + n + p\) bằng
Trong các hàm số dưới đây, hàm số nào đồng biến trên tập \(\mathbb{R}\)?
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Tìm giá trị cực đại \({y_{CD}}\) và giá trị cực tiểu \({y_{CT}}\) của hàm số đã cho.
Cho hai hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {3{m^2} + 4m + 5} \right)x + 2019\) và \(g\left( x \right) = \left( {{m^2} + 2m + 5} \right){x^3} - \left( {2{m^2} + 4m + 9} \right){x^2} - 3x + 2\) (với \(m\) là tham số). Hỏi phương trình \(g\left( {f\left( x \right)} \right) = 0\) có bao nhiêu nghiệm?
Có tất cả bao nhiêu giá trị thực của tham số \(m\) để đường thẳng \(d:y = mx + 1\) cắt đồ thị \(\left( C \right):{x^3} - {x^2} + 1\) tại ba điểm \(A;B\left( {0;1} \right);C\) phân biệt sao cho tam giác \(AOC\) vuông tại \(O\left( {0;0} \right)\)?
Trong hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y - 3}}{{ - 1}} = \dfrac{{z - 1}}{1}\) cắt mặt phẳng \(\left( P \right):2x - 3y + z - 2 = 0\) tại điểm \(I\left( {a;b;c} \right)\). Khi đó \(a + b + c\) bằng
Cho hình chóp \(S.ABC\) có đáy là tam giác ABC vuông cân tại B, \(AB = a,\,\,SA = 2a,\,\,SA \bot \left( {ABC} \right)\). Bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\) là:
Cho hai số phức \(z,w\) thay đổi thỏa mãn \(\left| z \right| = 3,\left| {z - w} \right| = 1\). Biết tập hợp điểm của số phức \(w\) là hình phẳng \(H\). Tính diện tích \(S\) của hình \(H\).
Trong hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( {1;0;0} \right);B\left( {0; - 1;0} \right);C\left( {0;0;2} \right)\). Phương trình mặt phẳng \(\left( {ABC} \right)\) là
Trong hệ tọa độ \(Oxyz\), cho điểm \(A\left( {3;5;3} \right)\) và hai mặt phẳng \(\left( P \right):2x + y + 2z - 8 = 0\), \(\left( Q \right):x - 4y + z - 4 = 0\). Viết phương trình đường thẳng \(d\) đi qua \(A\) và song song với cả hai mặt phẳng \(\left( P \right),\left( Q \right)\).
Trong hệ tọa độ \(Oxyz\) cho điểm \(A\left( { - 1;1;6} \right)\) và đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\\z = 2t\end{array} \right.\) . Hình chiếu vuông góc của \(A\) trên \(\Delta \) là
Tìm hệ số của số hạng chứa \({x^9}\) trong khai triển nhị thức Newton của biểu thức \({\left( {3 + x} \right)^{11}}\).
Trong hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\dfrac{{x - {x_0}}}{a} = \dfrac{{y - {y_0}}}{b} = \dfrac{{z - {z_0}}}{c}\). Điểm \(M\) nằm trên \(\Delta \) thì điểm \(M\) có dạng nào sau đây?
Cho \(\int\limits_0^1 {\dfrac{{{9^x} + 3m}}{{{9^x} + 3}}dx} = {m^2} - 1\) . Tính tổng tất cả các giá trị của tham số \(m.\)
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Một hình nón có đỉnh là tâm của hình vuông \(A'B'C'D'\) và có đường tròn đáy ngoại tiếp hình vuông \(ABCD\). Tính diện tích xung quanh của hình nón đó.


