Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên R, có đạo hàm \(f'\left( x \right)\). Biết rằng đồ thị hàm số \(f'\left( x \right)\) như hình vẽ. Xác định điểm cực đại của hàm số \(g\left( x \right) = f\left( x \right) + x\).
A. Không có cực trị
B. \(x = 0\)
C. \(x = 1\)
D. \(x = 2\)
Lời giải của giáo viên
ToanVN.com
Ta có \(g'\left( x \right) = f'\left( x \right) + 1 = 0 \Leftrightarrow f'\left( x \right) = - 1 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 2\end{array} \right.\).
BBT:
Dựa vào BBT ta thấy hàm số \(y = g\left( x \right)\) có 1 điểm cực đại là \(x = 2\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = {\log _{\frac{1}{2}}}\left| x \right|.\) Mệnh đề nào dưới đây là mệnh đề sai?
Tìm nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{x{{\left( {\ln x + 2} \right)}^2}}}\).
Xác định các hệ số \(a,\;b,\;c\) để đồ thị hàm số \(y = \dfrac{{ax - 1}}{{bx + c}}\) có đồ thị hàm số như hình vẽ bên:
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { - 3;0;0} \right);\,\,B\left( {0;0;3} \right);\,\,C\left( {0; - 3;0} \right)\) và mặt phẳng \(\left( P \right):\,\,x + y + z - 3 = 0\). Tìm trên (P) điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right|\) nhỏ nhất.
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(y' = {x^2} - 3x + {m^2} + 5m + 6.\) Tìm tất cả các giá trị của m để hàm số đồng biến trên \(\left( {3;\;5} \right).\)
Cho hàm số \(f\left( x \right)\) thỏa mãn \({\left[ {f'\left( x \right)} \right]^2} + f\left( x \right).f''\left( x \right) = {x^3} - 2x\;\;\forall x \in R\) và \(f\left( 0 \right) = f'\left( 0 \right) = 2.\) Tính giá trị của \(T = {f^2}\left( 2 \right).\)
Giá trị lớn nhất của hàm số \(y = {x^2} + \dfrac{{16}}{x}\) trên đoạn \(\left[ {\dfrac{3}{2};\;4} \right]\) bằng:
Tìm tất cả các giá trị của tham số \(m\) để phương trình \({\left( {7 - 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} - 1}}\) có đúng bốn nghiệm phân biệt.
Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:
Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right) > 0\,\,\forall x \in R\). Tìm tập hợp tất cả các giá trị thực của x để \(f\left( {\dfrac{1}{x}} \right) < f\left( 1 \right)\).
Cho x là số thực dương, khai triển nhị thức \({\left( {{x^2} + \dfrac{1}{x}} \right)^{12}}\) ta có hệ số của số hạng chứa \({x^m}\) bằng 792. Giá trị của m là:
Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy hình trụ, \(AB = 4a;\,\,AC = 5a\). Tính thể tích khối trụ:
Với \(a\) và \(b\) là hai số thực dương, \(a \ne 1.\) Giá trị của \({a^{{{\log }_a}{b^3}}}\) bằng:
Tìm tập nghiệm \(S\) của phương trình \({2^{x + 1}} = 4.\)


