Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau
Khẳng định nào sau đây là đúng?
A. Hàm số có đúng một cực trị.
B. Hàm số có giá trị cực tiểu bằng 3.
C. Hàm số đạt cực đại tại \(x=1\) và đạt cực tiểu tại \(x=3.\)
D. Hàm số có giá trị lớn nhất bằng 2 và giá trị nhỏ nhất bằng 1.
Lời giải của giáo viên
ToanVN.com
Dựa vào BBT ta thấy hàm số đạt cực đại tại \(x = 1,\) giá trị cực đại \({y_{CD}} = 2\) và đạt cực tiểu tại \(x = 3,\) giá trị cực tiểu \({y_{CT}} = - 1\).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số nào sau đây có tập xác định là \(\mathbb{R}\)?
Hàm số \(y = {x^4} - {x^3} - x + 2019\) có bao nhiêu điểm cực trị?
Cho tập hợp \(A=\left\{ {0;\,1;\,2;\,3;\,4;\,5;\,6} \right\}.\) Số các số có 5 chữ số \(\overline {abcde} \) thỏa mãn điều kiện a, b, c, d, e thuộc A và \(a < b < c < d < e\) là
Tập nghiệm của bất phương trình \({\left( {\frac{1}{{1 + {a^2}}}} \right)^{2x + 1}} > 1\) (với \(a\) là tham số, \(a \ne 0\)) là
Trong không gian \(Oxyz\), lấy điểm \(C\)trên tia \(Oz\) sao cho \(OC = 1\). Trên hai tia \(Ox,Oy\) lần lượt lấy hai điểm \(A,B\) thay đổi sao cho \(OA + OB = OC\). Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện \(O.ABC\)?
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(R\), có bảng biến thiên như sau:
Mệnh đề nào sau đây là đúng ?
Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(V\). Tính thể tích khối đa diện \(ABCB'C'\).
Cho hàm số \(y=f(x)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị như hình bên. Khẳng định nào sau đây là đúng?
Trong không gian tọa độ Oxyz, mặt phẳng song song với mặt phẳng (Oyz) và đi qua điểm \(K\left( {4; - 5;7} \right)\) có phương trình là
Cho hình chóp \(S.ABC\) có đáy là tam giác cân tại \(A\), \(AB = AC = a\), \(\widehat {BAC} = 120^\circ \). Tam giác \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích \(V\) của khối chóp \(S.ABC\).
Giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \dfrac{{1 + 2 + 3 + ... + \left( {n - 1} \right) + n}}{{{n^2}}}\) bằng
Cho hai hình trụ có bán kính đường tròn đáy lần lượt là \({R_1},{R_2}\) và chiều cao lần lượt là \(h_1,h_2.\) Nếu hai hình trụ có cùng thể tích và \(\frac{h_1}{h_2}=\frac{9}{4} \) thì tỉ số \(\frac{{{R_1}}}{{{R_2}}}\) bằng
Gọi \({x_0}\) là nghiệm dương nhỏ nhất của phương trình \(3si{n^2}x + 2\sin x\cos x - co{s^2}x = 0\). Chọn khẳng định đúng?
Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Gọi H, K lần lượt là hình chiếu vuông góc của A lên các đường thẳng SB và SD. Biết \(\angle HAK = 40^0.\) Góc giữa hai mặt phẳng (SBC) và (SCD) bằng
Tìm nguyên hàm của hàm số \(y = {x^2} - 3x + \frac{1}{x}\).


