Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị hàm số như hình bên dưới đây:
Có bao nhiêu giá trị nguyên của tham số m để phương trình \({f^2}\left( x \right) - \left( {m + 5} \right)\left| {f\left( x \right)} \right| + 4m + 4 = 0\) có 7 nghiệm phân biệt?
.png)
A. 1
B. 2
C. 3
D. 4
Lời giải của giáo viên
ToanVN.com
.png)
Đặt \(t = \left| {f\left( x \right)} \right| \Rightarrow \) Phương trình trở thành:
\({t^2} - \left( {m + 5} \right)t + 4m + 4 = 0 \Leftrightarrow \left( {t - 4} \right)\left( {t - m - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
t = 4\\
t = m + 1
\end{array} \right.\) (*).
Đồ thị hàm số y = |f(x)|
Ta thấy phương trình f(x) = t có các trường hợp sau:
+) Vô nghiệm.
+) Có 2 nghiệm phân biệt
+) Có 3 nghiệm phân biệt
+) Có 4 nghiệm phân biệt
Do đó để phương trình (*) có 7 nghiệm x phân biệt thì phương trình (*) có 2 nghiệm \({t_1},{t_2}\) phân biệt thỏa mãn \(\Rightarrow 0 < m + 1 < 4 \Leftrightarrow - 1 < m < 3\) .
Kết hợp điều kiện \(m \in Z \Rightarrow m \in \left\{ {0;1;2} \right\}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính R = 6cm. I, K là 2 điểm trên đoạn OA sao cho OI = IK = KA . Các mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) lần lượt qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính \({r_1},{r_2}\). Tính tỉ số \(\frac{{{r_1}}}{{{r_2}}}\)
Có bao nhiêu giá trị thực của tham số m để phương trình \(\left( {x - 1} \right)\left( {x - 3} \right)\left( {x - m} \right) = 0\) có 3 nghiệm phân biệt lập thành cấp số nhân tăng?
Cho biết \({\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}}\), khẳng định nào sau đây Đúng?
Cho đồ thị hàm số y = f(x) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0\) và \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty \). Mệnh đề nào sau đây là mệnh đề đúng?
Cho hàm số \(y = \left| {\frac{{x + 1}}{{x - 3}}} \right|\) có đồ thị là (C) . Khẳng định nào sau đây là sai?
Cho biết \({9^x} - {12^2} = 0\) , tính giá trị biểu thức \(P = \frac{1}{{{3^{ - x - 1}}}} - {8.9^{\frac{{x - 1}}{2}}} + 19\)
Trong các lăng trụ sau, lăng trụ nào không nội tiếp được trong một mặt cầu?
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB// CD), BC = 2a,AB = AD = DC = a với a > 0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x > 0; M khác O và D. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với hai đường thẳng SD và AC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?
Cho hàm số \(y = {x^3} + 5x + 7\). Giá trị lớn nhất của hàm số trên đoạn [-5; 0] bằng bao nhiêu?
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \({\left( {\sqrt[3]{3} + \sqrt[5]{5}} \right)^{2019}}\)
Cho hình trụ có bán kính đáy R và độ dài đường sinh là l. Thể tích khối trụ là:
Tìm tất cả các giá trị của tham số m để phương trình \(\log _3^23x + {\log _3}x + m - 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng (0; 1)


