Cho hàm số \(y=f\left( x \right)\) có \(f'\left( x \right)\) liên tục trên \(\left[ 0;2 \right]\) và \(f\left( 2 \right)=16;\int\limits_{0}^{2}{f\left( x \right)dx}=4\). Tính \(I=\int\limits_{0}^{1}{xf'\left( 2x \right)dx}\).
A. I = 7
B. I = 20
C. I = 12
D. I = 13
Lời giải của giáo viên
ToanVN.com
Đặt \(t = 2x \Rightarrow dt = 2dx\).
Đổi cận \(\left\{ \begin{array}{l} x = 0 \Rightarrow t = 0\\ x = 1 \Rightarrow t = 2 \end{array} \right. \Rightarrow I = \int\limits_0^2 {\frac{t}{2}.f'\left( t \right)\frac{{dt}}{2}} = \frac{1}{4}\int\limits_0^2 {tf'\left( t \right)dt} \)
Đặt \(\left\{ \begin{array}{l} u = t\\ dv = f'\left( t \right)dt \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = dt\\ v = f\left( t \right) \end{array} \right.\)
\( \Rightarrow I = \frac{1}{2}\left[ {\left. {tf\left( t \right)} \right|_0^2 - \int\limits_0^2 {f\left( t \right)dt} } \right] = \frac{1}{4}\left[ {2f\left( 2 \right) - 4} \right] = \frac{1}{4}\left( {2.16 - 4} \right) = 7\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( 1;0;0 \right),B\left( 0;2;0 \right),C\left( 0;0;3 \right)\). Thể tích tứ diện OABC bằng:
Tính \(\lim \frac{{\sqrt {4{n^2} + 1} - \sqrt {n + 2} }}{{2n - 3}}\) bằng:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y=x-\sqrt{4-{{x}^{2}}}\). Khi đó M-m bằng:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 0;-2;-1 \right),B\left( -2;-4;3 \right), C\left( 1;3;-1 \right)\). Tìm điểm \(M\in \left( Oxy \right)\) sao cho \(\left| \overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC} \right|\) đạt giá trị nhỏ nhất.
Cho \(\int\limits_{1}^{2}{f\left( x \right)dx}=2\). Tính \(\int\limits_{1}^{4}{\frac{f\left( \sqrt{x} \right)}{\sqrt{x}}dx}\) bằng:
Tìm tập nghiệm của bất phương trình \({\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0\)
Cho \(f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ -1;1 \right]\) và \(\int\limits_{-1}^{1}{f\left( x \right)dx}=4\). Kết quả \(I=\int\limits_{-1}^{1}{\frac{f\left( x \right)}{1+{{e}^{x}}}dx}\) bằng:
Tính khoảng cách giữa các tiếp tuyến của đồ thị hàm \(f\left( x \right)={{x}^{3}}-3x+1\) (C) tại cực trị của \(\left( C \right)\)
Có bao nhiêu số tự nhiên có bốn chữ số khác nhau được tạo thành từ các chữ số của tập \(X = \left\{ {1;3;5;8;9} \right\}\).
Trong khai triển nhị thức \({{\left( a+2 \right)}^{n+6}}\) có tất cả 17 số hạng. Khi đó giá trị n bằng:
Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {5^{2x}}\)?
Cho mặt phẳng (P) đi qua các điểm \(A\left( { - 2;0;0} \right),B\left( {0;3;0} \right),C\left( {0;0; - 3} \right)\). Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau:
Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là:


