Cho hàm số \(y=a{{x}^{3}}+b{{x}^{2}}+cx+d\text{ }\left( a\ne 0 \right)\) có đồ thị như hình bên.
Mệnh đề nào sau đây là đúng?
A. \(a > 0;{\rm{ }}b > 0;{\rm{ }}c > 0;{\rm{ }}d = 0\)
B. \(a > 0;{\rm{ }}b < 0;{\rm{ }}c = 0;{\rm{ }}d = 0\)
C. \(a > 0;{\rm{ }}b > 0;{\rm{ }}c = 0;{\rm{ }}d = 0\)
D. \(a > 0;{\rm{ }}b > 0;{\rm{ }}c < 0;{\rm{ }}d = 0\)
Lời giải của giáo viên
ToanVN.com
Ta có \(\underset{x\to +\infty }{\mathop{\lim }}\,y=+\infty \Rightarrow \) Hệ số a>0.
Đồ thị hàm số đi qua gốc tọa độ \(O\left( 0;0 \right)\Rightarrow \) Hệ số d=0.
Gọi \({{x}_{1}};{{x}_{2}}\) lần lượt là hoành độ các điểm cực trị.
\(\Rightarrow {{x}_{1}};{{x}_{2}}\) là nghiệm của \(y'=3a{{x}^{2}}+2bx+c\).
Dựa vào đồ thị \({{x}_{1}}<0;{{x}_{2}}=0 \Rightarrow {{x}_{1}}.{{x}_{2}}=0\Leftrightarrow \frac{c}{3a}=0\Rightarrow c=0\).
Mặt khác \({{x}_{1}}+{{x}_{2}}<0\Leftrightarrow -\frac{2b}{3a}<0\Rightarrow b>0\) (Vì a>0).
CÂU HỎI CÙNG CHỦ ĐỀ
Với x là số thực dương tùy ý, \({{\log }_{3}}\left( {{x}^{3}} \right)\) bằng
Diện tích S của hình phẳng giới hạn bởi các đường \(y={{x}^{3}}-6{{x}^{2}}\) và y=6-11x được tính bởi công thức nào dưới đây?
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y=\frac{1}{3}{{x}^{3}}+\left( m+1 \right){{x}^{2}}-\left( m+1 \right)x+1\) đồng biến trên \(\mathbb{R}\)?
Trong không gian Oxyz, hình chiếu vuông góc của điểm \(M\left( 1;-2;3 \right)\) trên trục Ox có toạ độ là
Trong không gian Oxyz, cho mặt cầu \((S): {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4\text{x}+2y-2\text{z}-3=0\,.\)Tâm của (S) có tọa độ là
Cho hình nón \(\left( N \right)\) có bán kính đáy bằng 10. Mặt phẳng \(\left( P \right)\) vuông góc với trục của hình nón cắt hình nón theo một thiết diện là hình tròn có bán kính bằng 6, khoảng cách giữa mặt phẳng \(\left( P \right)\) với mặt phẳng chứa đáy của hình nón \(\left( N \right)\) là 5. Diện tích xung quanh của hình nón \(\left( N \right)\) bằng?
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị trong hình dưới. Số nghiệm của phương trình \(f\left( x \right)+2=0\) là
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng \(\left( ABC \right)\), SA=2a, tam giác ABC vuông cân tại C và \(AC=a\sqrt{2}\) (minh họa như hình bên).
.png)
Góc giữa đường thẳng SB và mặt phẳng \(\left( ABC \right)\) bằng
Cho hàm số \(y=\left( 2x+2 \right)\left( {{x}^{2}}-1 \right)\) có đồ thị \(\left( C \right)\), số giao điểm của đồ thị \(\left( C \right)\) với trục hoành là
Cho hai số phức \({{z}_{1}}=5i\) và \({{z}_{2}}=2021+i\). Phần thực của số phức \({{z}_{1}}{{z}_{2}}\) bằng
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của \({f}'\left( x \right)\) như sau:
.png)
Số điểm cực trị của hàm số đã cho là
Tiệm cận ngang của đồ thị hàm số \(y=\frac{2-x}{x+1}\) là
Diện tích xung quanh của hình nón có độ dài đường sinh \(l\) và bán kính đáy \(r\) là
Cho \(x,y,\,z>0\); \(a,\,b,\,c>1\) và \({{a}^{x}}={{b}^{y}}={{c}^{z}}=\sqrt{abc}\). Giá trị lớn nhất của biểu thức \(P=\frac{16}{x}+\frac{16}{y}-{{z}^{2}}\) thuộc khoảng nào dưới đây?
Gọi \({{z}_{0}}\) là nghiệm phức có phần ảo dương của phương trình \({{z}^{2}}-6\text{z}+13=0\). Môđun của số phức \({{z}_{0}}+i\) là


