Cho hàm số \(f\left( x \right)\) nhận giá trị dương và thỏa mãn \(f\left( 0 \right)=1, {{\left( {f}'\left( x \right) \right)}^{3}}={{e}^{x}}{{\left( f\left( x \right) \right)}^{2}},\,\forall x\in \mathbb{R}\)
Tính \(f\left( 3 \right)\)
A. \(f\left( 3 \right) = {e^2}\)
B. \(f\left( 3 \right) = {e^3}\)
C. \(f\left( 3 \right) = e\)
D. \(f\left( 3 \right) = 1\)
Lời giải của giáo viên
ToanVN.com
\({\left( {f'\left( x \right)} \right)^3} = {e^x}{\left( {f\left( x \right)} \right)^2},\,\forall x \in R \Leftrightarrow f'\left( x \right) = \sqrt[3]{{{e^x}}}.\sqrt[3]{{{{\left( {f\left( x \right)} \right)}^2}}} \Leftrightarrow \frac{{f'\left( x \right)}}{{\sqrt[3]{{{{\left( {f\left( x \right)} \right)}^2}}}}} = \sqrt[3]{{{e^x}}}\)
\( \Rightarrow \int\limits_0^3 {\frac{{f'\left( x \right)}}{{\sqrt[3]{{{{\left( {f\left( x \right)} \right)}^2}}}}}dx} = \int\limits_0^3 {\sqrt[3]{{{e^x}}}dx} \Leftrightarrow \int\limits_0^3 {\frac{1}{{\sqrt[3]{{{{\left( {f\left( x \right)} \right)}^2}}}}}df\left( x \right)} = \int\limits_0^3 {{e^{\frac{x}{3}}}dx} \Leftrightarrow \left. {3\sqrt[3]{{f\left( x \right)}}} \right|_0^3 = \left. {3{e^{\frac{x}{3}}}} \right|_0^3\)
\(\sqrt[3]{{f\left( 3 \right)}} - \sqrt[3]{{f\left( 0 \right)}} = e - 1 \Leftrightarrow \sqrt[3]{{f\left( 3 \right)}} - 1 = e - 1 \Leftrightarrow f\left( 3 \right) = {e^3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa \(\int\limits_{-2}^{2}{f\left( \sqrt{{{x}^{2}}+5}-x \right)\text{d}x}=1,\int\limits_{1}^{5}{\frac{f\left( x \right)}{{{x}^{2}}}\text{d}x}=3.\) Tính \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}.\)
Cho tập A có 26 phần tử. Hỏi A có bao nhiêu tập con gồm 6 phần tử?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-3 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=8\). Khi đó tâm I và bán kính R của mặt cầu là
Trong không gian Oxyz, mặt phẳng \(\left( P \right):\,x+2y-6z-1=0\) đi qua điểm nào dưới đây?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a, \(AC = a \sqrt3\). Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC).
Tìm hai số thực x, y thỏa mãn \(\left( 3x+2yi \right)+\left( 3-i \right)=4x-3i\) với i là đơn vị ảo.
Đặt \({{\log }_{5}}3=a\), khi đó \({{\log }_{9}}1125\) bằng
Cho hàm số \(y=\frac{x+1}{2x-2}\). Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) xác định trên \(\mathbb{R}\) và hàm số y=f'(x) có đồ thị như hình bên. Biết rằng f'(x)<0 với mọi \(x\in \left( -\infty ;-3,4 \right)\cup \left( 9;+\infty \right).\) Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g(x)=f(x)-mx+5 có đúng hai điểm cực trị.
Cho hàm số y=f(x) có đồ thị như hình vẽ dưới đây.
Giá trị cực đại của hàm số bằng
Cho hàm số f(x) có đạo hàm \(f'(x)={{x}^{2019}}{{(x-1)}^{2}}{{(x+1)}^{3}}\). Số điểm cực đại của hàm số f(x) là
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, \(\widehat{ACB}=30{}^\circ \), biết góc giữa B'C và mặt phẳng \(\left( ACC'A' \right)\) bằng \(\alpha \) thỏa mãn \(\sin \alpha =\frac{1}{2\sqrt{5}}\). Cho khoảng cách giữa hai đường thẳng A'B và CC' bằng \(a\sqrt{3}\). Tính thể tích V của khối lăng trụ ABC.A'B'C'.
Trong không gian Oxyz, cho hai điểm \(A\left( 4;-1;3 \right), B\left( 0;1;-5 \right)\). Phương trình mặt cầu đường kính AB là
Giá trị nhỏ nhất của hàm số \(y=\sqrt{x-1}+\sqrt{2-x}+2019\) bằng
Cho khối nón có chiều cao bằng 2a và bán kính đáy bằng a. Thể tích của khối nón đã cho bằng


