Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có \(\int\limits_{1}^{2}{f\left( x \right)\text{d}x}=3\); \(\int\limits_{2}^{5}{f\left( x \right)\text{d}x}=-1\). Tính \(I=\int\limits_{1}^{5}{f\left( x \right)\text{d}x}\)
A. I = 3
B. I = 4
C. I = 2
D. I = -2
Lời giải của giáo viên
ToanVN.com
\(I = \int\limits_1^5 {f\left( x \right)\,{\rm{d}}x} = \int\limits_1^2 {f\left( x \right)\,{\rm{d}}x} + \int\limits_2^5 {f\left( x \right)\,{\rm{d}}x} = 3 + \left( { - 1} \right) = 2\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối nón có bán kính đáy bằng r, chiều cao h. Thể tích V của khối nón là:
Trong không gian cho tam giác ABC vuông tại A có \(AB=\sqrt{3}\) và \(\widehat{ACB}={{30}^{\text{o}}}\). Tính thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC.
Tập nghiệm của bất phương trình \({{\log }_{2}}x<3\) là
Tập nghiệm của bất phương trình \({\log ^2}x - 13\log x + 36 > 0\) là:
Gọi \({{z}_{1}}\) là nghiệm phức có phần ảo âm thỏa mãn: \({{z}^{2}}+6z+13=0\). Tìm phần ảo của số phức \(w={{\left( i+1 \right)}^{2}}{{z}_{1}}\).
Cho hàm số \(y={{x}^{4}}+4{{x}^{2}}\) có đồ thị \(\left( C \right)\). Tìm số giao điểm của đồ thị \(\left( C \right)\) và trục hoành.
Cho khối nón có đường sinh bằng 5 và bán kính đáy bằng 3. Thể tích khối nón bằng
Trong mặt phẳng Oxy, cho các điểm A, B như hình vẽ bên. Trung điểm của đoạn thẳng AB biểu diễn số phức
.jpg.png)
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
.jpg.png)
Trong không gian Oxyz cho mặt phẳng \((P)\text{ }:x+y+z-2=0\). Điểm nào sau đây thuộc mặt phẳng (P)?
Viết phương trình mặt phẳng qua \(M\left( 1;-1;2 \right),N\left( 3;1;4 \right)\) và song song với trục Ox
Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh đường thẳng CD. Thể tích khối tròn xoay thu được là:
Cho hình lăng trụ đứng ABC.A'B'C' có AA' =4a, đáy ABC là tam giác đều cạnh a. Thể tích của khối lăng trụ là:
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên:
.png)
Khẳng định nào sau đây là khẳng định đúng:


