Lời giải của giáo viên
ToanVN.com
Gọi \(\left( T \right)\) là khối trụ có đường cao là 2a, bán kính đường tròn đáy là a và \(\left( N \right)\) là khối nón có đường cao là a, bán kính đường tròn đáy là a.
Ta có:
Thể tích khối trụ \(\left( T \right)\) là: \({{V}_{1}}=\pi .{{a}^{2}}.2a =2\pi .{{a}^{3}}\)
Thể tích khối nón \(\left( N \right)\) là: \({{V}_{2}}=\frac{1}{3}\pi .{{a}^{2}}.a =\frac{\pi .{{a}^{3}}}{3}\).
Thể tích khối tròn xoay thu được là: \(V={{V}_{1}}-{{V}_{2}} =2\pi .{{a}^{3}}-\frac{\pi .{{a}^{3}}}{3} =\frac{5\pi {{a}^{3}}}{3}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối nón có bán kính đáy bằng r, chiều cao h. Thể tích V của khối nón là:
Trong không gian cho tam giác ABC vuông tại A có \(AB=\sqrt{3}\) và \(\widehat{ACB}={{30}^{\text{o}}}\). Tính thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC.
Tập nghiệm của bất phương trình \({{\log }_{2}}x<3\) là
Gọi \({{z}_{1}}\) là nghiệm phức có phần ảo âm thỏa mãn: \({{z}^{2}}+6z+13=0\). Tìm phần ảo của số phức \(w={{\left( i+1 \right)}^{2}}{{z}_{1}}\).
Tập nghiệm của bất phương trình \({\log ^2}x - 13\log x + 36 > 0\) là:
Cho hàm số \(y={{x}^{4}}+4{{x}^{2}}\) có đồ thị \(\left( C \right)\). Tìm số giao điểm của đồ thị \(\left( C \right)\) và trục hoành.
Cho khối nón có đường sinh bằng 5 và bán kính đáy bằng 3. Thể tích khối nón bằng
Trong mặt phẳng Oxy, cho các điểm A, B như hình vẽ bên. Trung điểm của đoạn thẳng AB biểu diễn số phức
.jpg.png)
Trong không gian Oxyz cho mặt phẳng \((P)\text{ }:x+y+z-2=0\). Điểm nào sau đây thuộc mặt phẳng (P)?
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
.jpg.png)
Viết phương trình mặt phẳng qua \(M\left( 1;-1;2 \right),N\left( 3;1;4 \right)\) và song song với trục Ox
Cho hình lăng trụ đứng ABC.A'B'C' có AA' =4a, đáy ABC là tam giác đều cạnh a. Thể tích của khối lăng trụ là:
Giả sử a, b là các số thực sao cho \({{x}^{3}}+{{y}^{3}}=a{{.10}^{3z}}+b{{.10}^{2z}}\) đúng với mọi các số thực dương x, y, z thoả mãn \(\log \left( x+y \right)=z\) và \(\log \left( {{x}^{2}}+{{y}^{2}} \right)=z+1\). Giá trị của a+b bằng


