Lời giải của giáo viên
ToanVN.com
TXĐ: \(D = \mathbb{R}\).
TH1: \(m = 1\). Khi đó hàm số trở thành: \(f\left( x \right) = - 5{x^2} + 4x + 3\).
Ta có \(f'\left( x \right) = - 10x + 4 = 0 \Leftrightarrow x = \dfrac{2}{5}\).
BBT:
Từ đó ta suy ra BBT của hàm số \(y = f\left( {\left| x \right|} \right)\) như sau:
Hàm số có 3 điểm cực trị, do đó \(m = 1\) thỏa mãn.
TH2: \(m \ne 1\).
Để hàm số \(y = f\left( {\left| x \right|} \right)\) có 3 điểm cực trị thì hàm số \(y = f\left( x \right)\) có 2 điểm cực trị trái dấu.
Ta có: \(f'\left( x \right) = f\left( x \right) = 3\left( {m - 1} \right){x^2} - 10x + m + 3 = 0\).
Để hàm số có 2 cực trị trái dấu \( \Leftrightarrow f\left( x \right) = 0\) có 2 nghiệm trái dấu
\( \Leftrightarrow ac < 0 \Leftrightarrow 3\left( {m - 1} \right)\left( {m + 3} \right) < 0 \Leftrightarrow - 3 < m < 1\).
Do \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 2; - 1;0} \right\}\).
Kết hợp các trường hợp ta có \(m \in \left\{ { - 2; - 1;\;0;\;1} \right\}\).
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABC có \(SA = \dfrac{{a\sqrt 3 }}{2}\), các cạnh còn lại cùng bằng a. Bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC là:
Phương trình \({4^x} + 1 = {2^x}m.\cos \left( {\pi x} \right)\) có nghiệm duy nhất. Số giá trị của tham số \(m\) thỏa mãn là:
Trong không gian với hệ tọa độ Oxyz cho tam giác ABC biết \(A(2;1;0),B(3;0;2),C(4;3; - 4)\). Viết phương trình đường phân giác trong góc A.
Đồ thị hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) có hai điểm cực trị A và B. Điểm nào dưới đây thuộc đường thẳng AB ?
Hàm số \(F\left( x \right) = {e^{{x^2}}}\) là nguyên hàm của hàm số nào trong các hàm số sau:
Diện tích mặt cầu ngoại tiếp khối hộp chữ nhật có kích thước: \(a,\,\,\sqrt 3 a,\,\,2a\) là:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) đồng thời thỏa mãn \(f\left( 0 \right) = f\left( 1 \right) = 5\). Tính tích phân\(I = \int\limits_0^1 {f'\left( x \right){e^{f\left( x \right)}}{\rm{d}}x} \).
Trong không gian với hệ tọa độ Oxyz, hỏi trong các phương trình sau phương trình nào là phương trình của mặt cầu?
Gọi z1, z2 là các nghiệm của phương trình \({z^2} - 2z + 5 = 0\) . Tính \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) .
Tìm tập xác định của hàm số \(y = {({x^2} - 3x + 2)^\pi }\).
Cho đường tròn \((T):{(x - 1)^2} + {(y + 2)^2} = 5\) và hai điểm A(3; -1), B(6; -2). Viết phương trình đường thẳng cắt (T) tại hai điểm C, D sao cho ABCD là hình bình hành.
Cho số phức z có \(\left| z \right| = 1\). Tìm giá trị lớn nhất của biểu thức \(P = \left| {{z^2} - z} \right| + \left| {{z^2} + z + 1} \right|\) .
Tìm giá trị thực của tham số \(m\)để đường thẳng \(d:y = x - m + 2\) cắt đồ thị hàm số \(y = \dfrac{{2x}}{{x - 1}}\)\(\left( C \right)\) tại hai điểm phân biệt \(A\) và \(B\) sao cho độ dài \(AB\) ngắn nhất.
Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ?\({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\).
Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng \((P):x + 2y - 2z + 1 = 0,\) \((Q):x + my + (m - 1)z + 2019 = 0\). Khi hai mặt phẳng (P), (Q) tạo với nhau một góc nhỏ nhất thì mặt phẳng (Q) đi qua điểm M nào sau đây?


