Câu hỏi Đáp án 3 năm trước 59

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) thỏa mãn \(f'\left( x \right) - 2018f\left( x \right) = 2018{x^{2017}}{e^{2018x}}\) với mọi \(x \in \mathbb{R}\), \(f\left( 0 \right) = 2018\). Tính \(f\left( 1 \right)\)? 

A. \(f\left( 1 \right) = 2019{e^{2018}}\). 

Đáp án chính xác ✅

B. \(f\left( 1 \right) = 2019{e^{ - 2018}}\). 

C. \(f\left( 1 \right) = 2017{e^{2018}}\). 

D. \(f\left( 1 \right) = 2018{e^{2018}}\). 

Lời giải của giáo viên

verified ToanVN.com

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,f'\left( x \right) - 2018f\left( x \right) = 2018{x^{2017}}{e^{2018x}}\\ \Leftrightarrow {e^{ - 2018x}}f'\left( x \right) - 2018{e^{ - 2018x}}.f\left( x \right) = 2018{x^{2017}}\end{array}\)

\( \Rightarrow {\left( {{e^{ - 2018x}}f\left( x \right)} \right)^\prime } = 2018{x^{2017}} \Rightarrow {e^{ - 2018x}}f\left( x \right)\) là một nguyên hàm của \(2018{x^{2017}}\)

Ta có:

\(\int {2018{x^{2017}}} dx = {x^{2018}} + C\)\( \Rightarrow {e^{ - 2018x}}f\left( x \right) = {x^{2018}} + {C_0}\)

Mà \(f\left( 0 \right) = 2018\)\( \Rightarrow 2018 = {C_0}\, \Rightarrow {e^{ - 2018x}}f\left( x \right) = {x^{2018}} + 2018 \Leftrightarrow f\left( x \right) = {x^{2018}}{e^{2018x}} + 2018{e^{2018x}}\)

\( \Rightarrow f\left( 1 \right)\)\( = {e^{2018}} + 2018{e^{2018}} = 2019{e^{2018}}\).

Chọn: A

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = 27 + \cos x\) và \(f\left( 0 \right) = 2019\). Mệnh đề nào dưới đây đúng? 

Xem lời giải » 3 năm trước 82
Câu 2: Trắc nghiệm

Tính thể tích của khối lập phương ABCD.A’B’C’D’ cạnh a. 

Xem lời giải » 3 năm trước 70
Câu 3: Trắc nghiệm

Cho hình chóp \(S.\,ABC\) có \(AB = AC = 4,\,BC = 2,\,SA = 4\sqrt 3 \), . Tính thể tích khối chóp \(S.\,ABC.\) 

Xem lời giải » 3 năm trước 66
Câu 4: Trắc nghiệm

Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh bằng \(4\pi \). Thể tích khối trụ là  

Xem lời giải » 3 năm trước 64
Câu 5: Trắc nghiệm

Đạo hàm của hàm số \(y = \sin \,x + {\log _3}{x^3}\,\,\left( {x > 0} \right)\) là  

Xem lời giải » 3 năm trước 64
Câu 6: Trắc nghiệm

Cho \({\log _3}x = 3{\log _3}2\). Khi đó giá trị của x là  

Xem lời giải » 3 năm trước 63
Câu 7: Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:  

Xem lời giải » 3 năm trước 63
Câu 8: Trắc nghiệm

Hỏi có bao nhiêu giá trị m nguyên trong \(\left[ { - 2017;2017} \right]\) để phương trình \(\log \left( {mx} \right) = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?  

Xem lời giải » 3 năm trước 62
Câu 9: Trắc nghiệm

Tìm tọa độ điểm M  trên trục Ox cách đều hai điểm \(A\left( {1;2; - 1} \right)\) và điểm \(B\left( {2;1;2} \right)\). 

Xem lời giải » 3 năm trước 62
Câu 10: Trắc nghiệm

Có bao nhiêu điểm thuộc đồ thị \(\left( C \right)\) của hàm số \(y = \dfrac{2}{{{x^2} + 2x + 2}}\) có hoành độ và tung độ đều là số nguyên?  

Xem lời giải » 3 năm trước 62
Câu 11: Trắc nghiệm

Cho hàm số \(y = \left| {{{\sin }^3}x - m.\sin \,x + 1} \right|\). Gọi S là tập hợp tất cả các số tự nhiên m sao cho hàm số đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\). Tính số phần tử của S? 

Xem lời giải » 3 năm trước 61
Câu 12: Trắc nghiệm

Xét một bảng ô vuông gồm \(4 \times 4\) ô vuông. Người ta điền vào mỗi ô vuông một trong hai số 1 hoặc -1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách điền số?  

Xem lời giải » 3 năm trước 61
Câu 13: Trắc nghiệm

Tích \(\dfrac{1}{{2019!}}{\left( {1 - \dfrac{1}{2}} \right)^1}.{\left( {1 - \dfrac{1}{3}} \right)^2}.{\left( {1 - \dfrac{1}{4}} \right)^3}...{\left( {1 - \dfrac{1}{{2019}}} \right)^{2018}}\) được viết dưới dạng \({a^b}\), khi đó \(\left( {a;b} \right)\) là cặp nào trong các cặp sau?  

Xem lời giải » 3 năm trước 61
Câu 14: Trắc nghiệm

Tính thể tích V của khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao \(h = 4\).  

Xem lời giải » 3 năm trước 61
Câu 15: Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 2019;2019} \right]\) để đồ thị hàm số \(y = \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng? 

Xem lời giải » 3 năm trước 61

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »