Cho hàm số \(f\left( x \right)\) biết hàm số \(y={{f}'}'(x)\) là hàm đa thức bậc 4 có đồ thị như hình vẽ.
.jpg.png)
Đặt \(g(x)=2f\left( \frac{1}{2}{{x}^{2}} \right)+f\left( -{{x}^{2}}+6 \right)\), biết rằng \(g(0)>0\) và \(g\left( 2 \right)<0\). Tìm số điểm cực trị của hàm số \(y=\left| g\left( x \right) \right|\).
A. 3
B. 5
C. 7
D. 6
Lời giải của giáo viên
ToanVN.com
Từ đồ thị hàm số \(y={{f}'}'(x)\) ta có \({{f}'}'(x)>0\,,\forall x\in \mathbb{R}\)\(\Rightarrow \) Hàm số \(y={f}'\left( x \right)\) đồng biến trên \(\mathbb{R}\).
\({g}'(x)=2x.{f}'\left( \frac{1}{2}{{x}^{2}} \right)-2x.{f}'\left( -{{x}^{2}}+6 \right)=2x\left[ {f}'\left( \frac{1}{2}{{x}^{2}} \right)-{f}'\left( -{{x}^{2}}+6 \right) \right]\).
\(g'(x) = 0 \Leftrightarrow \left[ \begin{array}{l} 2x = 0\\ f'\left( {\frac{1}{2}{x^2}} \right) = f'\left( { - {x^2} + 6} \right) \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ \frac{1}{2}{x^2} = - {x^2} + 6 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - 2\\ x = 2 \end{array} \right.\).
(do hàm số \(y={f}'\left( x \right)\) đồng biến trên \(\mathbb{R}\))
Xét \(g'(x) > 0 \Leftrightarrow \) \(2x\left[ {f'\left( {\frac{1}{2}{x^2}} \right) - f'\left( { - {x^2} + 6} \right)} \right] > 0 \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x > 0\\ \frac{1}{2}{x^2} > - {x^2} + 6 \end{array} \right.\\ \left\{ \begin{array}{l} x < 0\\ \frac{1}{2}{x^2} < - {x^2} + 6 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x > 2\\ - 2 < x < 0 \end{array} \right.\).
Suy ra \(g'(x) < 0 \Leftrightarrow \left[ \begin{array}{l} x < - 2\\ 0 < x < 2 \end{array} \right.\).
Vì \(g(x)=2f\left( \frac{1}{2}{{x}^{2}} \right)+f\left( -{{x}^{2}}+6 \right)\) là hàm số chẵn trên \(\mathbb{R}\) và có \(g\left( 2 \right)<0\) nên \(g\left( -2 \right)=g\left( 2 \right)=a<0,\,\,g(0)=b>0\).
Bảng biến thiên của hàm số \(g\left( x \right)\):
.png)
Vậy hàm số \(y=\left| g(x) \right|\) có \(7\) điểm cực trị.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như sau
.png)
Hàm số \(f\left( x \right)\) có bao nhiêu điểm cực trị?
Thể tích của khối lập phương có độ dài cạnh \(a=3\) bằng
Tiệm cận ngang của đồ thị hàm số \(y=\frac{3x+1}{1-x}\) là
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right):\,3x-2y+z-11=0\). Điểm nào sau đây thuộc mặt phẳng \(\left( \alpha \right)\)?
Gọi \(M,\ m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+2\) trên đoạn \(\left[ -1;\ 2 \right]\). Tính giá trị biểu thức \(P=M-2m\).
Cho hàm số \(f\left( x \right)=\sin 3x\). Trong các khẳng định sau, khẳng định nào đúng?
Cho hai số phức \({{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=2\) và \(\left| {{z}_{1}}+{{z}_{2}} \right|=\sqrt{10}\). Tìm giá trị lớn nhất của \(P=\left| \left( 2{{z}_{1}}-{{z}_{2}} \right)\left( 1+\sqrt{3}i \right)+1-\sqrt{3}i \right|\)
Đồ thị của hàm số nào dưới đây có dạng như đường cong sau ?
.jpg.png)
Một hình nón có diện tích đáy bằng \(16\pi \) (đvdt) có chiều cao \(h=3\). Thể tích hình nón bằng
Có bao nhiêu số nguyên a \(\left( a>3 \right)\) để phương trình \(\log \left[ {{\left( {{\log }_{3}}x \right)}^{\log a}}+3 \right]={{\log }_{a}}\left( {{\log }_{3}}x-3 \right)\) có nghiệm \(x>81\).
Công thức tính thể tích \(V\) của khối trụ có bán kính đáy \(r\) và chiều cao \(h\) là:
Nghiệm của phương trình \({{\log }_{3}}\left( 2x \right)=4\)
Cho số phức \(z=4-3i\). Môđun của số phức \(z\) bằng
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=3\) và công sai \(d=5\). Tính tổng 10 số hạng đầu của cấp số cộng


