Lời giải của giáo viên
ToanVN.com
Dựa vào đồ thị hàm số f = f(x) suy ra f(f(x)) = 1 <=> \(\left[ \begin{gathered}
f(x) = a(a < - 1)\;\;\;\;\;\;\;\;(1) \hfill \\
f(x) = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2) \hfill \\
f(x) = b(1 < b < 2)\;\;\;\;\;(3) \hfill \\
\end{gathered} \right.\)
TH1
f(x)=a (a<-1) => pt có 1 nghiệm
TH2
f(x) = 0 phương trình có ba nghiệm phân biệt
TH3
f(x) = b (1<b<2) => pt có ba nghiệm phân biệt
các nghiệm của (1); (2) và (3) là đôi một khác nhau
Vậy f(f(x))=1 có 7 nghiệm phân biệt
Chọn D
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) = x2 + 3. Khẳng định nào dưới đây đúng?
Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như sau:
.png)
Số điểm cực trị của hàm số đã cho là:
Trong không gian Oxyz, cho mặt phẳng (P): -2x+5y+z-3=0. Vec tơ nào dưới đây là một vec tơ pháp tuyển của (P)?
Nghiệm của phương trình \({{\log }_{5}}(3x)=2\) là:
Cho số phức z thỏa mãn iz = 6 + 5i. Số phức liên hợp của z là:
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại C, AC = 3a và SA vuông gốc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SAC) bằng
Cho khối chóp có diện tích đáy B = 3a2 và chiều cao h = a. Thể tích của khối chóp đã cho bằng
Nếu \(\int\limits_{0}^{3}{f(x)dx=3}\) thì \(\int\limits_{0}^{3}{2f(x)dx}\) bằng
Cho hàm số f(x) = ex + 1. Khẳng định nào dưới đây đúng?
\(f(x) = \left\{ \begin{array}{l} 2x - 1\;\;\;\;\;\;\;khi\;\;\;\;x \ge 1\\ 3{x^2} - 2\;\;\;\;khi\;\;\;\;x < 1 \end{array} \right.\). Giả sử F là nguyên hàm của f trên R thỏa mãn F(0)=2. Giá trị của F(-1) + 2F(2) bằng
Với n là số nguyên dương bất kì, n ≥ 5, công thức nào dưới đây đúng
Cho hai số phức z = 5 + 2i và w = 1 - 4i. Số phức z + w bằng
Có bao nhiêu số nguyên x thỏa mãn \(\left( {{3}^{{{x}^{2}}}}-{{9}^{x}} \right)\left[ {{\log }_{2}}(x+30)-5 \right]\le 0\)?


