Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị là đường cong trong hình dưới. Biết hàm số \(f\left( x \right)\) đạt cực trị tại hai điểm \({{x}_{1}},\,\,{{x}_{2}}\) thỏa mãn \({{x}_{2}}={{x}_{1}}+2\) ; \(f\left( {{x}_{1}} \right)+f\left( {{x}_{2}} \right)=0\) và \(\int\limits_{{{x}_{1}}}^{{{x}_{1}}+1}{f\left( x \right)\text{d}x}=\frac{5}{4}\). Tính \(L=\underset{x\to \,{{x}_{1}}}{\mathop{\lim }}\,\frac{\,f\left( x \right)-2\,}{{{\left( x-{{x}_{1}} \right)}^{2}}}\).
.jpg.png)
A. -1
B. -2
C. -3
D. -4
Lời giải của giáo viên
ToanVN.com
Giả sử \(f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\)\(\left( a\ne 0 \right)\).
Có \(f'\left( x \right) = 3a{x^2} + 2bx + c = 0 \Leftrightarrow \left[ \begin{array}{l} x = {x_1}\\ x = {x_2} = {x_1} + 2 \end{array} \right.\).
Suy ra: \({f}'\left( x \right)=3a\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)\)
\(\Rightarrow {f}'\left( x \right)=3a\left( x-{{x}_{1}} \right)\left( x-{{x}_{1}}-2 \right)\)
\(\Rightarrow {f}'\left( x \right)=3a{{\left( x-{{x}_{1}} \right)}^{2}}-6a\left( x-{{x}_{1}} \right)\).
Lấy nguyên hàm hai vế ta có:
\(f\left( x \right)=a{{\left( x-{{x}_{1}} \right)}^{3}}-3a{{\left( x-{{x}_{1}} \right)}^{2}}+C\).
Khi đó \(f\left( {{x}_{1}} \right)=C\) và \(\,\,\,\,f\left( {{x}_{2}} \right)=a{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{3}}-3a{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+C=8a-12a+C=C-4a\).
Mà \(f\left( {{x}_{1}} \right)+\,\,f\left( {{x}_{2}} \right)=0\), nên \(C+C-4a=0\)\(\Leftrightarrow C=2a\).
Suy ra \(f\left( x \right)=a{{\left( x-{{x}_{1}} \right)}^{3}}-3a{{\left( x-{{x}_{1}} \right)}^{2}}+2a\).
Mặt khác \(\int\limits_{{{x}_{1}}}^{{{x}_{1}}+1}{f\left( x \right)\text{d}x=\frac{5}{4}}\,\,\Leftrightarrow \int\limits_{{{x}_{1}}}^{{{x}_{1}}+1}{\left[ a{{\left( x-{{x}_{1}} \right)}^{3}}-3a{{\left( x-{{x}_{1}} \right)}^{2}}+2a \right]\text{d}x=\frac{5}{4}}\)
\(\Leftrightarrow \left. \left[ \frac{a}{4}{{\left( x-{{x}_{1}} \right)}^{4}}-a{{\left( x-{{x}_{1}} \right)}^{3}}+2ax \right]_{{}}^{{}} \right|_{\,{{x}_{1}}}^{\,{{x}_{1}}+1}=\frac{5}{4}\)\(\Leftrightarrow \left[ \frac{a}{4}-a+2a\left( {{x}_{1}}+1 \right) \right]-2a{{x}_{1}}=\frac{5}{4}\) \(\Leftrightarrow a=1\).
Do đó: \(f\left( x \right)={{\left( x-{{x}_{1}} \right)}^{3}}-3{{\left( x-{{x}_{1}} \right)}^{2}}+2\).
Vậy \(L=\underset{x\to \,{{x}_{1}}}{\mathop{\lim }}\,\frac{f\left( x \right)-2}{{{\left( x-{{x}_{1}} \right)}^{2}}}=\underset{x\to \,{{x}_{1}}}{\mathop{\lim }}\,\frac{{{\left( x-{{x}_{1}} \right)}^{3}}-3{{\left( x-{{x}_{1}} \right)}^{2}}}{{{\left( x-{{x}_{1}} \right)}^{2}}}=\underset{x\to \,{{x}_{1}}}{\mathop{\lim }}\,\left[ \left( x-{{x}_{1}} \right)-3 \right]=-\,3\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như sau
.png)
Hàm số \(f\left( x \right)\) có bao nhiêu điểm cực trị?
Thể tích của khối lập phương có độ dài cạnh \(a=3\) bằng
Tiệm cận ngang của đồ thị hàm số \(y=\frac{3x+1}{1-x}\) là
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right):\,3x-2y+z-11=0\). Điểm nào sau đây thuộc mặt phẳng \(\left( \alpha \right)\)?
Gọi \(M,\ m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+2\) trên đoạn \(\left[ -1;\ 2 \right]\). Tính giá trị biểu thức \(P=M-2m\).
Cho hàm số \(f\left( x \right)=\sin 3x\). Trong các khẳng định sau, khẳng định nào đúng?
Cho hai số phức \({{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=2\) và \(\left| {{z}_{1}}+{{z}_{2}} \right|=\sqrt{10}\). Tìm giá trị lớn nhất của \(P=\left| \left( 2{{z}_{1}}-{{z}_{2}} \right)\left( 1+\sqrt{3}i \right)+1-\sqrt{3}i \right|\)
Đồ thị của hàm số nào dưới đây có dạng như đường cong sau ?
.jpg.png)
Một hình nón có diện tích đáy bằng \(16\pi \) (đvdt) có chiều cao \(h=3\). Thể tích hình nón bằng
Có bao nhiêu số nguyên a \(\left( a>3 \right)\) để phương trình \(\log \left[ {{\left( {{\log }_{3}}x \right)}^{\log a}}+3 \right]={{\log }_{a}}\left( {{\log }_{3}}x-3 \right)\) có nghiệm \(x>81\).
Công thức tính thể tích \(V\) của khối trụ có bán kính đáy \(r\) và chiều cao \(h\) là:
Nghiệm của phương trình \({{\log }_{3}}\left( 2x \right)=4\)
Cho số phức \(z=4-3i\). Môđun của số phức \(z\) bằng
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=3\) và công sai \(d=5\). Tính tổng 10 số hạng đầu của cấp số cộng


