Câu hỏi Đáp án 3 năm trước 152

Cho hàm số \(y=\sqrt{\left( 2m-1 \right)\sin x-\left( m+2 \right)\cos x+4m-3}\,\)(1). Có tất cả bao nhiêu giá trị nguyên dương nhỏ hơn \(2019\) của tham số m để hàm số (1) xác định với mọi \(x\in \mathbb{R}\)?

A. 2017

Đáp án chính xác ✅

B. 2019

C. 2018

D. 0

Lời giải của giáo viên

verified ToanVN.com

Hàm số (1) xác định \(\forall x\in \mathbb{R}\)\(\Leftrightarrow \left( 2m-1 \right)\sin x-\left( m+2 \right)\cos x+4m-3\ge 0,\forall x\) (2)

+ Nếu \(x=\pi +k2\pi \), (2) \(\Leftrightarrow m+2+4m-3\ge 0\)\(\Leftrightarrow m\ge \frac{1}{5}\)

+ Nếu \(x\ne \pi +k2\pi \), đặt \(t=\tan \frac{x}{2}\). Ta có: \(\sin x=\frac{2t}{1+{{t}^{2}}}\), \(\cos x=\frac{1-{{t}^{2}}}{1+{{t}^{2}}}\)

(2) \(\Leftrightarrow \left( 2m-1 \right).\frac{2t}{1+{{t}^{2}}}-\left( m+2 \right)\frac{1-{{t}^{2}}}{1+{{t}^{2}}}+4m-3\ge 0,\forall t\)

\(\Leftrightarrow \left( 5m-1 \right){{t}^{2}}+2\left( 2m-1 \right)t+3m-5\ge 0,\,\forall t\) (*)

TH1: \(m=\frac{1}{5}\), (*)\(\Leftrightarrow -\frac{6}{5}t-\frac{22}{5}\ge 0\)\(\Leftrightarrow t\le -\frac{11}{3}\) (KTM – loại)

TH2: \(m\ne \frac{1}{5}\)

(*) \(\begin{array}{l}
 \Leftrightarrow \left\{ \begin{array}{l}
m > \frac{1}{5}\\
\Delta ' = {\left( {2m - 1} \right)^2} - \left( {5m - 1} \right)\left( {3m - 5} \right) \le 0
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
m > \frac{1}{5}\\
 - 11{m^2} + 24m - 4 \le 0
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
m > \frac{1}{5}\\
\left[ \begin{array}{l}
m \le \frac{2}{{11}}\\
m \ge 2
\end{array} \right.
\end{array} \right.
\end{array}\)

Do đó \(\left( 2 \right)\Leftrightarrow m\ge 2\).

Lại có: \(\left\{ \begin{array}{l}
m > 0\\
m < 2019\\
m \in Z*
\end{array} \right.\) nên \(m \in \left\{ {2{\mkern 1mu} ,{\mkern 1mu} 3{\mkern 1mu} ,{\mkern 1mu} 4{\mkern 1mu} ,...,2018} \right\}\)

Vậy có 2017 giá trị m cần tìm.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số y=f(x) có đạo hàm trên R và có đồ thị hàm số f’(x) như hình vẽ bên.

Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(g\left( x \right)=f\left( x \right)-mx\) có đúng hai điểm cực tiểu?

 

Xem lời giải » 3 năm trước 198
Câu 2: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 173
Câu 3: Trắc nghiệm

Cho hình hộp chữ nhật \(ABCD.{A}'{B}'{C}'{D}'\) các đường chéo của các hình chữ nhật \(ABCD\,\,;\,AB{B}'{A}'\,;\,AD{D}'{A}'\) lần lượt là \(\sqrt{5}\,;\,\sqrt{10\,}\,;\sqrt{13}\). Thể tích khối hộp chữ nhật đã cho là

Xem lời giải » 3 năm trước 169
Câu 4: Trắc nghiệm

Cho hình chóp \(D.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\),\(DA\) vuông góc với mặt phẳng đáy. Biết \(AB=3a,BC=4a,AD=5a\). Bán kính mặt cầu ngoại tiếp hình chóp \(D.ABC\) bằng

Xem lời giải » 3 năm trước 168
Câu 5: Trắc nghiệm

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}
{\frac{{2{x^2} - 3x + 1}}{{x - 1}}{\rm{khi}}x \ne 1}\\
{{\rm{2}}a + {\rm{1 khi }}x = 1}
\end{array}} \right.\) Tìm giá trị của tham số a để hàm số \(f\left( x \right)\) liên tục tại \(x=1\).

Xem lời giải » 3 năm trước 164
Câu 6: Trắc nghiệm

Cho hình trụ có thiết diện qua trục là một hình vuông, diện tích mỗi mặt đáy bằng \(9\pi \left( c{{m}^{\text{2}}} \right).\)

Tính diện tích xung quanh hình trụ đó.

Xem lời giải » 3 năm trước 163
Câu 7: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=2a,\,\,AD=a\). Hình chiếu của S lên mặt phẳng đáy là trung điểm H của cạnh AB; góc tạo bởi cạnh SC và mặt phẳng đáy là \({{45}^{o}}.\) Thể tíchkhối chóp S.ABCD là

Xem lời giải » 3 năm trước 163
Câu 8: Trắc nghiệm

Cho hình lăng trụ đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a và cạnh bên bằng 2a. Thể tích của khối lăng trụ đã cho là

Xem lời giải » 3 năm trước 162
Câu 9: Trắc nghiệm

Hàm số nào dưới đây có giá trị nhỏ nhất trên tập xác định?

Xem lời giải » 3 năm trước 162
Câu 10: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng xét dấu đạo hàm như sau

Hàm số \(y=f\left( 3-2x \right)\) nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 161
Câu 11: Trắc nghiệm

Cho hình bát diện đều \(ABCDEF\) như hình vẽ. Tổng số cạnh và mặt của hình bát diện bằng bao nhiêu?

Xem lời giải » 3 năm trước 161
Câu 12: Trắc nghiệm

Tập tất cả các giá trị của tham số a để hàm số \(y={{\left( a-2 \right)}^{x}}\) nghịch biến trên \(\mathbb{R}\) là:

Xem lời giải » 3 năm trước 160
Câu 13: Trắc nghiệm

Bất phương trình \({{2}^{2x}}-{{18.2}^{x}}+32\ge 0\) có tập nghiệm là

Xem lời giải » 3 năm trước 160
Câu 14: Trắc nghiệm

Cho \(a,\,\,b\) là hai số dương với \(a\ne 1\) thỏa mãn \({{\log }_{a}}b=3.\) Khi đó, giá trị \({{\log }_{b}}\left( \frac{{{a}^{2}}}{b} \right)\) bằng:

Xem lời giải » 3 năm trước 160
Câu 15: Trắc nghiệm

Cho hình chóp đều \(S.ABC\) có góc giữa mặt bên và mặt đáy bằng \({{60}^{\text{o}}}\), G là hình chiếu vuông góc của S trên mặt phẳng \(\left( ABC \right)\). Khoảng cách từ G đến SA bằng \(\frac{a}{\sqrt{7}}.\) Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( SAC \right)\). Khi đó, \(\tan \frac{\alpha }{2}\) bằng

Xem lời giải » 3 năm trước 157

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »