Cho hai số thực dương x, y thỏa mãn \({2^{\ln \left( {\frac{{x + y}}{2}} \right)}}{.5^{\ln \left( {x + y} \right)}} = {2^{\ln 5}}\) . Tìm giá trị lớn nhất của biểu thức sau: \(P = \left( {x + 1} \right)\ln x + \left( {y + 1} \right)\ln y\)
A. \({P_{\max }} = 10\)
B. \({P_{\max }} = 0\)
C. \({P_{\max }} = 1\)
D. \({P_{\max }} = ln2\)
Lời giải của giáo viên
ToanVN.com
\(\begin{array}{l}
{2^{\ln \left( {\frac{{x + y}}{2}} \right)}}{.5^{\ln \left( {x + y} \right)}} = {2^{\ln 5}} \Leftrightarrow {2^{\ln \left( {\frac{{x + y}}{2}} \right)}}{.5^{\ln \left( {x + y} \right)}} = {5^{\ln 2}}\\
\Leftrightarrow {2^{\ln \left( {\frac{{x + y}}{2}} \right)}} = {5^{\ln 2 - \ln \left( {x + y} \right)}} = {5^{\ln \frac{2}{{x + y}}}} = {5^{ - \ln \frac{{x + y}}{2}}} = {\left( {\frac{1}{5}} \right)^{\ln \frac{{x + y}}{2}}}\\
\Leftrightarrow \ln \left( {\frac{{x + y}}{2}} \right) = 0 \Leftrightarrow \frac{{x + y}}{2} = 1 \Leftrightarrow x + y = 2
\end{array}\)
Khi đó ta có:
\(\begin{array}{l}
P = \left( {x + 1} \right)\ln x + \left( {y + 1} \right)\ln y = \left( {x + 1} \right)\ln x + \left( {2 - x + 1} \right)\ln \left( {2 - x} \right)\\
P = \left( {x + 1} \right)\ln x + \left( {3 - x} \right)\ln \left( {2 - x} \right) = f\left( x \right)
\end{array}\)
ĐK: 0 < x< 2
Xét hàm số \(f\left( x \right) = \left( {x + 1} \right)\ln x + \left( {3 - x} \right)\ln \left( {2 - x} \right)\), sử dụng MTCT ta tìm được \(\mathop {\max }\limits_{\left( {0;2} \right)} f\left( x \right) = 0 \Leftrightarrow x = 1\)
.png)
Vậy \({P_{\max }} = 0 \Leftrightarrow x = y = 1\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho A là điểm nằm trên mặt cầu (S) tâm (O), có bán kính R = 6cm. I, K là 2 điểm trên đoạn OA sao cho OI = IK = KA . Các mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) lần lượt qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính \({r_1},{r_2}\). Tính tỉ số \(\frac{{{r_1}}}{{{r_2}}}\)
Cho biết \({\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}}\), khẳng định nào sau đây Đúng?
Có bao nhiêu giá trị thực của tham số m để phương trình \(\left( {x - 1} \right)\left( {x - 3} \right)\left( {x - m} \right) = 0\) có 3 nghiệm phân biệt lập thành cấp số nhân tăng?
Cho biết \({9^x} - {12^2} = 0\) , tính giá trị biểu thức \(P = \frac{1}{{{3^{ - x - 1}}}} - {8.9^{\frac{{x - 1}}{2}}} + 19\)
Cho hàm số \(y = \left| {\frac{{x + 1}}{{x - 3}}} \right|\) có đồ thị là (C) . Khẳng định nào sau đây là sai?
Cho đồ thị hàm số y = f(x) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0\) và \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty \). Mệnh đề nào sau đây là mệnh đề đúng?
Cho hàm số \(y = {x^3} + 5x + 7\). Giá trị lớn nhất của hàm số trên đoạn [-5; 0] bằng bao nhiêu?
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB// CD), BC = 2a,AB = AD = DC = a với a > 0. Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc AC. M là một điểm thuộc đoạn OD; MD=x với x > 0; M khác O và D. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với hai đường thẳng SD và AC cắt khối chóp S.ABCD theo một thiết diện. Tìm x để diện tích thiết diện là lớn nhất?
Trong các lăng trụ sau, lăng trụ nào không nội tiếp được trong một mặt cầu?
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \({\left( {\sqrt[3]{3} + \sqrt[5]{5}} \right)^{2019}}\)
Cho hình trụ có bán kính đáy R và độ dài đường sinh là l. Thể tích khối trụ là:
Tìm tất cả các giá trị của tham số m để phương trình \(\log _3^23x + {\log _3}x + m - 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng (0; 1)


