Cho hai số phức \({z_1},\,\,{z_2}\) thỏa mãn các điều kiện \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = 2\) và \(\left| {{z_1} + 2{z_2}} \right| = 4\). Giá trị của \(\left| {2{z_1} - {z_2}} \right|\) bằng:
A. \(2\sqrt 6 \)
B. \(\sqrt 6 \)
C. \(3\sqrt 6 \)
D. \(8\)
Lời giải của giáo viên
ToanVN.com
Gọi M, N lần lượt là điểm biểu diễn của \({z_1},\,\,{z_2}\) trên mặt phẳng phức
Do \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = 2\) \( \Rightarrow M,N\) thuộc đường tròn tâm O bán kính 2.
Gọi P, Q, R lần lượt là điểm biểu diễn của \(2{z_2},\,\, - {z_2},\,\,2{z_1}\) trên mặt phẳng phức (như hình vẽ)
Dựng các hình bình hành \(OMEP,\,\,ORFQ\).
Ta có: \(\left| {{z_1} + 2{z_2}} \right| = 4 \Rightarrow OE = 4\)
\(\left| {2{z_1} - {z_2}} \right| = OF\)
Tam giác OPE có:
\(\cos \widehat P = \dfrac{{P{E^2} + P{O^2} - E{O^2}}}{{2.PE.PO}} = \dfrac{{{2^2} + {4^2} - {4^2}}}{{2.2.4}} = \dfrac{1}{4} \Rightarrow \cos \widehat {ROQ} = \dfrac{1}{4}\)
\( \Rightarrow \cos \widehat {ORF} = - \dfrac{1}{4}\)
Tam giác ORF có: \(O{F^2} = O{R^2} + R{F^2} - 2.OR.RF.\cos \widehat {ORF} = {4^2} + {2^2} - 2.4.2.\dfrac{{ - 1}}{4} = 16 + 4 + 4 = 24\)
\( \Rightarrow OF = 2\sqrt 6 \Rightarrow \left| {2{z_1} - {z_2}} \right| = 2\sqrt 6 \)
Chọn: A
CÂU HỎI CÙNG CHỦ ĐỀ
Cho phương trình \({2^{\left| {\frac{{28}}{3}x + 1} \right|}} = {16^{{x^2} - 1}}\) . Khẳng định nào sau đây là đúng?
Có tất cả bao nhiêu số dương \(a\) thỏa mãn đẳng thức \({\log _2}a + {\log _3}a + {\log _5}a = {\log _2}a.{\log _3}a.{\log _5}a\)?
Một hình nón có đỉnh \(S\), đáy là đường tròn \(\left( C \right)\) tâm \(O\), bán kính \(R\) bằng với đường cao của hình nón. Tỉ số thể tích của hình nón và hình cầu ngoại tiếp hình nón bằng:
Đường cong trong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} + 2{x^2} + mx + 1\) có \(2\) điểm cực trị thỏa mãn \({x_{CD}} < {x_{CT}}\).
Số nghiệm của phương trình \({\log _2}x.{\log _3}\left( {2x - 1} \right) = 2{\log _2}x\) là:
Một hình lập phương có dện tích mặt chéo bằng \({a^2}\sqrt 2 \). Gọi \(V\) là thể tích khối cầu và \(S\) là diện tích mặt cầu ngoại tiếp hình lập phương nói trên. Khi đó tích \(S.V\) bằng
Đối với hàm số \(y = \ln \frac{1}{{x + 1}}\), khẳng định nào sau đây là khẳng định đúng?
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) sao cho \(f'\left( x \right) < 0;\,\forall x > 0.\) Hỏi mệnh đề nào dưới đây đúng?
Diện tích hình phẳng giới hạn bởi \(y = {x^3},y = 4x\) là:
Số điểm cực trị của hàm số \(y = \left| {\sin x - \dfrac{x}{4}} \right|,\,\,x \in \left( { - \pi ;\pi } \right)\) là:
Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \({\log _2}\left( {{5^x} - 1} \right).{\log _2}\left( {{{2.5}^x} - 2} \right) \ge m\) có tập nghiệm là \(\left[ {1; + \infty } \right)\)?
Trong không gian \(Oxyz\), cho hai đường thẳng \(d:\frac{{x - 1}}{{ - 2}} = \frac{{y + 2}}{1} = \frac{{z - 4}}{3}\) và \(d':\left\{ \begin{array}{l}x = - 1 + t\\y = - t\\z = - 2 + 3t\end{array} \right.\) cắt nhau. Phương trình mặt phẳng chứa \(d\) và \(d'\) là
Trong không gian \(Oxyz\), cho \(A\left( {4; - 2;6} \right),\,\,B\left( {2;4;2} \right)\), \(M \in \left( \alpha \right):\,\,x + 2y - 3z - 7 = 0\) sao cho \(\overrightarrow {MA} .\overrightarrow {MB} \) nhỏ nhất. Tọa độ của \(M\) bằng:
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z + 1}}{{ - 1}}\) và hai điểm \(A\left( {1;2; - 1} \right),B\left( {3; - 1; - 5} \right)\). Gọi \(d\) là đường thẳng đi qua điểm \(A\) và cắt đường thẳng \(\Delta \) sao cho khoảng cách từ \(B\) đến đường thẳng \(d\) là lớn nhất. Khi đó, gọi \(M\left( {a;b;c} \right)\) là giao điểm của \(d\) với đường thẳng \(\Delta \). Giá trị \(P = a + b + c\) bằng


