Một hình lập phương có dện tích mặt chéo bằng \({a^2}\sqrt 2 \). Gọi \(V\) là thể tích khối cầu và \(S\) là diện tích mặt cầu ngoại tiếp hình lập phương nói trên. Khi đó tích \(S.V\) bằng
A. \(SV = \frac{{3{\pi ^2}{a^5}}}{2}\)
B. \(SV = \frac{{3\sqrt 3 {\pi ^2}{a^5}}}{2}\)
C. \(SV = \frac{{3\sqrt 6 {\pi ^2}{a^5}}}{2}\)
D. \(SV = \frac{{\sqrt 3 {\pi ^2}{a^5}}}{2}\)
Lời giải của giáo viên
ToanVN.com
Gọi hình lập phương \(ABCD.A'B'C'D'\) cạnh \(x\) có diện tích mặt chéo \({S_{ACC'A'}} = {a^2}\sqrt 2 \)
Ta có \(AC = \sqrt {A{D^2} + D{C^2}} = x\sqrt 2 \) nên \({S_{ACC'A'}} = AC.AA' = x\sqrt 2 .x = {a^2}\sqrt 2 \Rightarrow x = a\)
Bán kính mặt cầu ngoại tiếp hình lập phương là \(R = \frac{{a\sqrt 3 }}{2}\)
Nên thể tích khối cầu ngoại tiếp hình lập phương là \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\frac{{a\sqrt 3 }}{2}} \right)^3} = \frac{{\sqrt 3 \pi {a^3}}}{2}\)
Diện tích mặt cầu ngoại tiếp hình lập phương là \(S = 4\pi {R^2} = 4\pi .{\left( {\frac{{a\sqrt 3 }}{2}} \right)^2} = 3\pi {a^2}\)
Suy ra \(S.V = 3\pi {a^3}.\frac{{\sqrt 3 }}{2}\pi {a^3} = \frac{{3\sqrt 3 }}{2}{\pi ^2}{a^5}\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Có tất cả bao nhiêu số dương \(a\) thỏa mãn đẳng thức \({\log _2}a + {\log _3}a + {\log _5}a = {\log _2}a.{\log _3}a.{\log _5}a\)?
Cho phương trình \({2^{\left| {\frac{{28}}{3}x + 1} \right|}} = {16^{{x^2} - 1}}\) . Khẳng định nào sau đây là đúng?
Một hình nón có đỉnh \(S\), đáy là đường tròn \(\left( C \right)\) tâm \(O\), bán kính \(R\) bằng với đường cao của hình nón. Tỉ số thể tích của hình nón và hình cầu ngoại tiếp hình nón bằng:
Đường cong trong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Số nghiệm của phương trình \({\log _2}x.{\log _3}\left( {2x - 1} \right) = 2{\log _2}x\) là:
Đối với hàm số \(y = \ln \frac{1}{{x + 1}}\), khẳng định nào sau đây là khẳng định đúng?
Diện tích hình phẳng giới hạn bởi \(y = {x^3},y = 4x\) là:
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) sao cho \(f'\left( x \right) < 0;\,\forall x > 0.\) Hỏi mệnh đề nào dưới đây đúng?
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} + 2{x^2} + mx + 1\) có \(2\) điểm cực trị thỏa mãn \({x_{CD}} < {x_{CT}}\).
Trong không gian \(Oxyz\), cho \(A\left( {4; - 2;6} \right),\,\,B\left( {2;4;2} \right)\), \(M \in \left( \alpha \right):\,\,x + 2y - 3z - 7 = 0\) sao cho \(\overrightarrow {MA} .\overrightarrow {MB} \) nhỏ nhất. Tọa độ của \(M\) bằng:
Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \({\log _2}\left( {{5^x} - 1} \right).{\log _2}\left( {{{2.5}^x} - 2} \right) \ge m\) có tập nghiệm là \(\left[ {1; + \infty } \right)\)?
Số điểm cực trị của hàm số \(y = \left| {\sin x - \dfrac{x}{4}} \right|,\,\,x \in \left( { - \pi ;\pi } \right)\) là:
Cho 4 điểm \(A\left( {3; - 2; - 2} \right);B\left( {3;2;0} \right);C\left( {0;2;1} \right);D\left( { - 1;1;2} \right)\). Mặt cầu tâm \(A\) và tiếp xúc với mặt phẳng \(\left( {BCD} \right)\) có phương trình là
Trong không gian \(Oxyz\), cho hai đường thẳng \(d:\frac{{x - 1}}{{ - 2}} = \frac{{y + 2}}{1} = \frac{{z - 4}}{3}\) và \(d':\left\{ \begin{array}{l}x = - 1 + t\\y = - t\\z = - 2 + 3t\end{array} \right.\) cắt nhau. Phương trình mặt phẳng chứa \(d\) và \(d'\) là
Cho hai số phức \({z_1} = 1 + 2i\) và \({z_2} = 2 - 3i\). Phần ảo của số phức \(w = 3{z_1} - 2{z_2}\) là:


