Cho hai hàm số \(f\left( x \right),\,\,g\left( x \right)\) có đạo hàm liên tục trên R. Xét các mệnh đề sau
1) \(k.\int{f(x)\,\text{d}x=\int{k.f(x)\,\text{d}x}}\), với k là hằng số thực bất kì.
2) \(\int{\left[ f\left( x \right)+g\left( x \right) \right]}\,\text{d}x=\int{f\left( x \right)\,\text{d}x+\int{g\left( x \right)\text{d}x}}\)
3) \(\int{\left[ f\left( x \right)g\left( x \right) \right]}\,\text{d}x=\int{f\left( x \right)\text{d}x.\int{g\left( x \right)\text{d}x.}}\)
4) \(\int{{f}'\left( x \right)g\left( x \right)\text{d}x+\int{f\left( x \right){g}'\left( x \right)\text{d}x=f\left( x \right)g\left( x \right)}}\).
Tổng số mệnh đề đúng là:
A. 2
B. 1
C. 4
D. 3
Lời giải của giáo viên
ToanVN.com
Mệnh đề đúng là mệnh đề 2
Thật vậy ta có \({{\left( \int{f\left( x \right)\text{d}x+\int{g\left( x \right)\text{d}x}} \right)}^{\prime }}={{\left( \int{f\left( x \right)\text{d}x} \right)}^{\prime }}+{{\left( \int{g\left( x \right)\text{d}x} \right)}^{\prime }}=f\left( x \right)+g\left( x \right)\)
Mệnh đề 1 sai
Nếu k=0 ta có VT=0; \(VP=\int{0dx}=C\ne VP\)
Mệnh đề 3 sai
Phản ví dụ chọn \(f\left( x \right)=1; g\left( x \right)=0\)
suy ra \(VT=\int{\left[ f\left( x \right)g\left( x \right) \right]}\,\text{d}x=\int{0dx}=C;\,VP=\int{f\left( x \right)\text{d}x.\int{g\left( x \right)\text{d}x}=\int{dx}.\int{0dx}=(x+{{C}_{1}})}.C2\)
Mệnh đề 4 sai vì \(VT=\int{\left[ {f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right) \right]\text{d}x}=\int{{{\left[ f\left( x \right)g\left( x \right) \right]}^{\prime }}\text{d}x}=f\left( x \right)g\left( x \right)+C\ne VP\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa \(\int\limits_{-2}^{2}{f\left( \sqrt{{{x}^{2}}+5}-x \right)\text{d}x}=1,\int\limits_{1}^{5}{\frac{f\left( x \right)}{{{x}^{2}}}\text{d}x}=3.\) Tính \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}.\)
Cho tập A có 26 phần tử. Hỏi A có bao nhiêu tập con gồm 6 phần tử?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-3 \right)}^{2}}+{{\left( y+1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=8\). Khi đó tâm I và bán kính R của mặt cầu là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a, \(AC = a \sqrt3\). Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC).
Trong không gian Oxyz, mặt phẳng \(\left( P \right):\,x+2y-6z-1=0\) đi qua điểm nào dưới đây?
Tìm hai số thực x, y thỏa mãn \(\left( 3x+2yi \right)+\left( 3-i \right)=4x-3i\) với i là đơn vị ảo.
Đặt \({{\log }_{5}}3=a\), khi đó \({{\log }_{9}}1125\) bằng
Cho hàm số \(y=\frac{x+1}{2x-2}\). Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) có đồ thị như hình vẽ dưới đây.
Giá trị cực đại của hàm số bằng
Cho hàm số y=f(x) xác định trên \(\mathbb{R}\) và hàm số y=f'(x) có đồ thị như hình bên. Biết rằng f'(x)<0 với mọi \(x\in \left( -\infty ;-3,4 \right)\cup \left( 9;+\infty \right).\) Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g(x)=f(x)-mx+5 có đúng hai điểm cực trị.
Cho hàm số f(x) có đạo hàm \(f'(x)={{x}^{2019}}{{(x-1)}^{2}}{{(x+1)}^{3}}\). Số điểm cực đại của hàm số f(x) là
Giá trị nhỏ nhất của hàm số \(y=\sqrt{x-1}+\sqrt{2-x}+2019\) bằng
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, \(\widehat{ACB}=30{}^\circ \), biết góc giữa B'C và mặt phẳng \(\left( ACC'A' \right)\) bằng \(\alpha \) thỏa mãn \(\sin \alpha =\frac{1}{2\sqrt{5}}\). Cho khoảng cách giữa hai đường thẳng A'B và CC' bằng \(a\sqrt{3}\). Tính thể tích V của khối lăng trụ ABC.A'B'C'.
Cho số phức \({{z}_{1}}=2+3i,{{z}_{2}}=-4-5i\). Tính \(z={{z}_{1}}+{{z}_{2}}\).
Cho khối nón có chiều cao bằng 2a và bán kính đáy bằng a. Thể tích của khối nón đã cho bằng


