Cho đồ thị \(y=f(x)\) như hình vẽ sau đây. Biết rằng \(\int\limits_{ - 2}^1 {f\left( x \right)dx} = a\) và \(\int\limits_1^2 {f\left( x \right)dx} = b\). Tính diện tích S của phần hình phẳng được tô đậm.
.png)
A. \(S=b-a\)
B. \(S=-a-b\)
C. \(S=a-b\)
D. \(S=a+b\)
Lời giải của giáo viên
ToanVN.com
Trên (-2;1) thì đồ thị nằm phía dưới Ox nên \(f(x)<0\), trên khoảng (1;2) thì đồ thị nằm trên Ox nên \(f(x)>0\)
Nên từ hình vẽ ta có diện tích phần được tô đậm là
\(S = \int\limits_{ - 2}^1 {\left| {f\left( x \right)} \right|dx} + \int\limits_1^2 {\left| {f\left( x \right)} \right|dx} = - \int\limits_{ - 2}^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} = - a + b = b - a\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x + 2y - 2z - 6 = 0\) và \(\left( Q \right):x + 2y - 2z + 3 = 0\). Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng
Xét hai số thực a, b dương khác 1. Mệnh đề nào sau đây đúng?
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng \(\left( Q \right):x + y + 3z = 0,\left( R \right):2x - y + z = 0\) là:
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z + 4 = 0\). Khi đó mặt phẳng (P) có một vectơ pháp tuyến là
Đường cong trong hình vẽ sau đây là đồ thị của hàm số nào?
.png)
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 4\) và hai điểm A(-1;2;-3); B(5;2;3). Gọi M là điểm thay đổi trên mặt cầu (S). Tính giá trị lớn nhất của biểu thức \(2M{A^2} + M{B^2}\).
Đồ thị hàm số \(y = \frac{{x + 1}}{{4x - 1}}\) có đường tiệm cận ngang là đường thẳng nào sau đây?
Cho a là số thực dương bất kì khác 1. Tính \(S = {\log _a}\left( {{a^3}\sqrt[4]{a}} \right)\).
Cho hình H là đa giác đều có 24 đỉnh. Chọn ngẫu nhiên 4 đỉnh của H. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
Trong không gian Oxyz, cho điểm \(A\left( { - 4;0;1} \right)\) và mặt phẳng \(\left( P \right):x - 2y - z + 4 = 0\). Mặt phẳng (Q) đi qua điểm A và song song với mặt phẳng (P) có phương trình là
Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = \overrightarrow i + 3\overrightarrow j - 2\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow a \) là
Biết \(\int\limits_1^2 {\frac{{{x^3}dx}}{{\sqrt {{x^2} + 1} - 1}}} = a\sqrt 5 + b\sqrt 2 + c\) với \(a, b, c\) là các số hữu tỉ. Tính \(P = a + b + c\).
Từ các chữ số 1; 5; 6; 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + 2z - 2 = 0\) và điểm \(I\left( { - 1;2; - 1} \right)\). Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5.
Tìm nghiệm của phương trình \({\log _2}\left( {x - 5} \right) = 4\).


