Cho đồ thị hàm số \(y=f(x)\) có đồ thị như hình bên. Diện tích hình phẳng (phần tô đậm trong hình) là
.jpg)
A. \(S = \int\limits_{ - 2}^0 {f\left( x \right)dx + \int\limits_0^1 {f\left( x \right)dx} } \)
B. \(S = \int\limits_{ - 2}^0 {f\left( x \right)dx} \)
C. \(S = \int\limits_0^{ - 2} {f\left( x \right)dx + \int\limits_0^1 {f\left( x \right)dx} } \)
D. \(S = \int\limits_{ - 2}^0 {f\left( x \right)dx - \int\limits_0^1 {f\left( x \right)dx} } \)
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tich của khối chóp tam giác đều có cạnh đáy bằng a, cạnh bên bằng 2a.
Dạng \(a+bi\) của số phức \(\frac{1}{{3 + 2i}}\) là số phức nào dưới đây?
Tập xác định của hàm số \(y = {\log _7}\frac{{2x - 5}}{{1 + x}}\) là
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {3; - 2;1} \right),\,B\left( {0;2;1} \right),\,C\left( { - 1;2;0} \right)\). Phương trình mặt phẳng (ABC) là
Trong bốn giới hạn sau đây, giới hạn nào có kết quả bằng 0?
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\left( d \right):\left\{ \begin{array}{l}
x = 1 + t\\
y = 2t\\
z = 2 - t
\end{array} \right.\). Trong các điểm sau điểm nào thuộc đường thẳng (d)?
Bảng phía dưới là bảng biến thiên của hàm số nào sau đây?
.png)
Tính thể tích của khối lăng trụ tam giác đều có cạnh đáy bằng \(a\sqrt 2 \), cạnh bên bằng \(2a\).
Biết \(K = \int\limits_1^4 {\left( {\frac{{2x + 1}}{{2\sqrt x }}} \right){e^x}dx = a.{e^4} + b.e} \), với \(a\,,\,b \in Z\) . Tính \(S = {a^3} + {b^3}\)
Tính thể tích hình trụ có bán kính đáy R và chiều cao bằng \(R\sqrt 3 \).
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu tâm I(1;- 1;0) và tiếp xúc với mặt phẳng \(\left( P \right):2x + 2y - z + 3 = 0\) là
Cho hình bình hành ABCD tâm I. Kết luận nào sau đây sai?(\({T_{\overrightarrow u }}\) là ký hiệu phép tịnh tiến theo véc tơ \(\overrightarrow u \))
Trên mặt phẳng tọa độ, tập hợp điểm biểu diển số phức z thỏa mãn \(\left| {z + 2 - i} \right| = \left| {\overline z - 3 + 2i} \right|\)
Phương trình \(\log \left( {x - 2} \right) = \log \left( {{x^2} - 4x + m} \right)\) có nghiệm duy nhất khi và chỉ khi
Cho hàm số \(y = f\left( x \right) = {\rm{a}}{{\rm{x}}^4} + b{{\rm{x}}^2} + c\) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(f\left( x \right) + 3 = 0\) bằng
.png)


