Tập xác định của hàm số \(y = {\log _7}\frac{{2x - 5}}{{1 + x}}\) là
A. \(\left( { - \infty ; - 1} \right) \cup \left( {\frac{5}{2}; + \infty } \right)\)
B. \(R\backslash \left\{ {\, - 1} \right\}\)
C. \(\left( { - 1;\frac{5}{2}} \right)\)
D. \(\left( { - \infty ; - 1} \right) \cup \left[ {\frac{5}{2}; + \infty } \right)\)
Lời giải của giáo viên
ToanVN.com
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tich của khối chóp tam giác đều có cạnh đáy bằng a, cạnh bên bằng 2a.
Dạng \(a+bi\) của số phức \(\frac{1}{{3 + 2i}}\) là số phức nào dưới đây?
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {3; - 2;1} \right),\,B\left( {0;2;1} \right),\,C\left( { - 1;2;0} \right)\). Phương trình mặt phẳng (ABC) là
Trong bốn giới hạn sau đây, giới hạn nào có kết quả bằng 0?
Bảng phía dưới là bảng biến thiên của hàm số nào sau đây?
.png)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\left( d \right):\left\{ \begin{array}{l}
x = 1 + t\\
y = 2t\\
z = 2 - t
\end{array} \right.\). Trong các điểm sau điểm nào thuộc đường thẳng (d)?
Tính thể tích của khối lăng trụ tam giác đều có cạnh đáy bằng \(a\sqrt 2 \), cạnh bên bằng \(2a\).
Tính thể tích hình trụ có bán kính đáy R và chiều cao bằng \(R\sqrt 3 \).
Phương trình \(\log \left( {x - 2} \right) = \log \left( {{x^2} - 4x + m} \right)\) có nghiệm duy nhất khi và chỉ khi
Biết \(K = \int\limits_1^4 {\left( {\frac{{2x + 1}}{{2\sqrt x }}} \right){e^x}dx = a.{e^4} + b.e} \), với \(a\,,\,b \in Z\) . Tính \(S = {a^3} + {b^3}\)
Trên mặt phẳng tọa độ, tập hợp điểm biểu diển số phức z thỏa mãn \(\left| {z + 2 - i} \right| = \left| {\overline z - 3 + 2i} \right|\)
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu tâm I(1;- 1;0) và tiếp xúc với mặt phẳng \(\left( P \right):2x + 2y - z + 3 = 0\) là
Cho hình lăng trụ ABC.A'B'C' có thể tích là V. Gọi G là trọng tâm của tam giác ABC. Thể tich của khối chóp G.A'B'C' tính theo V là
Trong các đa diện sau, đa diện nào luôn nội tiếp được trong một mặt cầu:
Cho \(x, y\) là các số thực dương thỏa mãn \(xy \le 2x - 1\). Giá trị nhỏ nhất của biểu thức \(S = \frac{{5\left( {x + 2y} \right)}}{y} + \ln \frac{{y + 2x}}{x}\) bằng \(a+\ln b\). Tính \(a+b\).


