Cho bất phương trình \({9^x} + \left( {m + 1} \right){3^x} + m > 0\left( 1 \right)\). Tìm tất cả các giá trị của tham số m để bất phương trình (1) có nghiệm đúng \(\forall x > 1\)?
A. \(m > - \frac{3}{2}.\)
B. \(m \ge - \frac{3}{2}.\)
C. \(m > 3 + 2\sqrt 2 .\)
D. \(m \ge 3 + 2\sqrt 2 .\)
Lời giải của giáo viên
ToanVN.com
Đặt \(t={{3}^{x}}\),vì x>1 nên t>3, bpt đã cho trở thành \({{t}^{2}}+\left( m+1 \right)t+m>0\) nghiệm đúng \(\forall t>3\)
\(\Leftrightarrow \frac{{{t}^{2}}-t}{t+1}>-m\) nghiệm đúng \(\forall t>3\)
Xét hàm số \(g\left( t \right)=t-2+\frac{2}{t+1},\forall t>3\), ta có \({g}'\left( t \right)=1-\frac{2}{{{\left( t+1 \right)}^{2}}}>0,\forall t>3\), hàm số đồng biến trên khoảng \(\left( 3;+\infty \right)\) và \(g\left( 3 \right)=\frac{3}{2}\)
YCBT \(\Leftrightarrow -m<\frac{3}{2}\Leftrightarrow m>-\frac{3}{2}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị nhỏ nhất của hàm số \(y=x+\frac{9}{x}\) trên đoạn \(\left[ 2;4 \right]\) là:
Trong không gian với hệ tọa độ Oxy cho điểm \(M\left( {2;1; - 3} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 3 = 0\). Tìm tọa độ hình chiếu vuông góc H của M trên (P).
Nghiệm phương trình \(\frac{1}{{{\sin }^{2}}x}+\sqrt{3}.\cot x-1=0\) là:
Cho tứ diện SABC và hai điểm M, N lần lượt thuộc các cạnh SA, SB sao cho \(\frac{SM}{AM}=\frac{1}{2}, \frac{SN}{BN}=2\). Mặt phẳng \(\left( P \right)\) đi qua hai điểm M, N và song song với cạnh SC, cắt AC, BC lần lượt tại L, K. Tính tỉ số thể tích \(\frac{{{V}_{SCMNKL}}}{{{V}_{SABC}}}\).
Trong không gian với hệ tọa độ Oxyz,cho đường thẳng điểm \(I\left( -1;-1;-1 \right)\) và mặt phẳng \(\left( P \right):2x-y+2z=0\). Viết phương trình mặt cầu \(\left( S \right)\) tâm I và tiếp xúc với \(\left( P \right)\)
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\). Hàm số luôn đồng biến trên R khi nào?
Cho tứ diện ABCD. Trong tam giác ABD vẽ đường trung tuyến BI và trọng tâm G. Lấy M thuộc đoạn thẳng BC. Tỉ số \(\frac{CM}{CB}\) phải bằng mấy để GM//(ACD)?
Phương trình \({9^{ - 2{x^2} - 3x}} + {2.3^{ - 2{x^2} - 3x}} - 3 = 0\).
Cho \(\int\limits_0^1 {\left( {1 - x} \right){e^x}dx} = ae + b\) với \(a,b \in Z\). Trong mặt phẳng tọa độ Oxy khoảng cách từ điểm M(a;b) đến đường thẳng \(\Delta :x + y + 2 = 0\) bằng bao nhiêu?
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60o. Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là:
Vectơ pháp tuyến của đường thẳng d đi qua điểm phân biệt A(a;0) và B(0;b) là:
Cho khối lăng trụ tam giác \(ABC.{A}'{B}'{C}'\) có thể tích là V. Gọi I, J lần lượt là trung điểm hai cạnh \(A{A}'\) và \(B{B}'\). Khi đó thể tích của khối đa diện \(ABCIJ{C}'\) bằng
Cho \({{\log }_{a}}x=2; {{\log }_{b}}x=3; {{\log }_{c}}x=4\). Giá trị của biểu thức \({{\log }_{{{a}^{2}}b\sqrt{c}}}x\) bằng:


