Cho tứ diện SABC và hai điểm M, N lần lượt thuộc các cạnh SA, SB sao cho \(\frac{SM}{AM}=\frac{1}{2}, \frac{SN}{BN}=2\). Mặt phẳng \(\left( P \right)\) đi qua hai điểm M, N và song song với cạnh SC, cắt AC, BC lần lượt tại L, K. Tính tỉ số thể tích \(\frac{{{V}_{SCMNKL}}}{{{V}_{SABC}}}\).
A. \(\frac{{{V_{SCMNKL}}}}{{{V_{SABC}}}} = \frac{4}{9}.\)
B. \(\frac{{{V_{SCMNKL}}}}{{{V_{SABC}}}} = \frac{1}{3}.\)
C. \(\frac{{{V_{SCMNKL}}}}{{{V_{SABC}}}} = \frac{2}{3}.\)
D. \(\frac{{{V_{SCMNKL}}}}{{{V_{SABC}}}} = \frac{1}{4}.\)
Lời giải của giáo viên
ToanVN.com
.png.jpg.png)
Chia khối đa diện SCMNKL bởi mặt phẳng \(\left( NLC \right)\) được hai khối chóp N.SMLC và N.LKC. Vì SC song song với \(\left( MNKL \right)\) nên \(SC\text{ // }ML\text{ // }NK\)
Ta có:
\(\frac{{{V}_{N.SMLC}}}{{{V}_{B.SAC}}}=\frac{\frac{1}{3}\text{d}\left( N;\left( SAC \right) \right).{{S}_{SMLC}}}{\frac{1}{3}\text{d}\left( B;\,\left( SAC \right) \right).{{S}_{\Delta SAC}}}=\frac{NS}{BS}.\left( 1-\frac{{{S}_{\Delta AML}}}{{{S}_{\Delta SAC}}} \right)=\frac{2}{3}\left( 1-\frac{AM}{AS}.\frac{AL}{AC} \right)=\frac{2}{3}\left( 1-\frac{2}{3}.\frac{2}{3} \right)=\frac{10}{27}\).
\(\frac{{{V}_{N.KLC}}}{{{V}_{S.ABC}}}=\frac{\frac{1}{3}\text{d}\left( N;\left( ABC \right) \right).{{S}_{\Delta KLC}}}{\frac{1}{3}\text{d}\left( S;\left( ABC \right) \right).{{S}_{\Delta ABC}}} =\frac{NB}{SB}.\frac{LC}{AC}.\frac{CK}{CB} =\frac{1}{3}.\frac{1}{3}.\frac{2}{3} =\frac{2}{27}\).
Suy ra \(\frac{{{V}_{SCMNKL}}}{{{V}_{SABC}}}= \frac{{{V}_{N.SMLC}}}{{{V}_{B.SAC}}}+\frac{{{V}_{N.KLC}}}{{{V}_{S.ABC}}} =\frac{10}{27}+\frac{2}{27} =\frac{4}{9}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị nhỏ nhất của hàm số \(y=x+\frac{9}{x}\) trên đoạn \(\left[ 2;4 \right]\) là:
Trong không gian với hệ tọa độ Oxy cho điểm \(M\left( {2;1; - 3} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 3 = 0\). Tìm tọa độ hình chiếu vuông góc H của M trên (P).
Nghiệm phương trình \(\frac{1}{{{\sin }^{2}}x}+\sqrt{3}.\cot x-1=0\) là:
Cho tứ diện ABCD. Trong tam giác ABD vẽ đường trung tuyến BI và trọng tâm G. Lấy M thuộc đoạn thẳng BC. Tỉ số \(\frac{CM}{CB}\) phải bằng mấy để GM//(ACD)?
Trong không gian với hệ tọa độ Oxyz,cho đường thẳng điểm \(I\left( -1;-1;-1 \right)\) và mặt phẳng \(\left( P \right):2x-y+2z=0\). Viết phương trình mặt cầu \(\left( S \right)\) tâm I và tiếp xúc với \(\left( P \right)\)
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\). Hàm số luôn đồng biến trên R khi nào?
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60o. Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là:
Cho \(\int\limits_0^1 {\left( {1 - x} \right){e^x}dx} = ae + b\) với \(a,b \in Z\). Trong mặt phẳng tọa độ Oxy khoảng cách từ điểm M(a;b) đến đường thẳng \(\Delta :x + y + 2 = 0\) bằng bao nhiêu?
Phương trình \({9^{ - 2{x^2} - 3x}} + {2.3^{ - 2{x^2} - 3x}} - 3 = 0\).
Cho khối lăng trụ tam giác \(ABC.{A}'{B}'{C}'\) có thể tích là V. Gọi I, J lần lượt là trung điểm hai cạnh \(A{A}'\) và \(B{B}'\). Khi đó thể tích của khối đa diện \(ABCIJ{C}'\) bằng
Hình chiếu song song của một hình vuông không thể là hình nào trong các hình sau:
Cho \({{\log }_{a}}x=2; {{\log }_{b}}x=3; {{\log }_{c}}x=4\). Giá trị của biểu thức \({{\log }_{{{a}^{2}}b\sqrt{c}}}x\) bằng:
Tính đạo hàm của hàm số \(y = \cos \sqrt {1 + {x^2}} \)


