Cho ba điểm \(A( - 2;0;0),\;B\left( {0;1;0} \right),\;C\left( {0;0; - 3} \right).\) Đường thẳng đi qua trực tâm \(H\) của tam giác \(ABC\) và vuông góc với \({\rm{mp}}\left( {ABC} \right)\) có phương trình là
A. \(\left\{ \begin{array}{l}x = 2 - 2t\\y = - 1 + t\\z = 3 - 3t\end{array} \right..\)
B. \(\left\{ \begin{array}{l}x = 3 - 3t\\y = - 6 + 6t\\z = 2 - 2t\end{array} \right..\)
C. \(\left\{ \begin{array}{l}x = 3 - 3t\\y = 6 + 6t\\z = 2 - 2t\end{array} \right..\)
D. \(\left\{ \begin{array}{l}x = - 6 + 6t\\y = 3 - 3t\\z = 2 - 2t\end{array} \right..\)
Lời giải của giáo viên
ToanVN.com
Dễ thấy các điểm \(A,B,C\) lần lượt thuộc các trục tọa độ nên \(OABC\) là tứ diện vuông tại \(O\).
Do đó đường thẳng \(OH\) đi qua \(O\) và vuông góc mặt phẳng \(\left( {ABC} \right)\) hay nhận \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 3;6; - 2} \right)\) làm VTCP. Khi đó \(OH:\left\{ \begin{array}{l}x = - 3t\\y = 6t\\x = - 2t\end{array} \right.\).
Kiểm tra các đáp án ta loại được A, D.
Đáp án B: Kiểm tra điểm \(O\) thuộc đường thẳng (ứng với \(t = 1\)) nên đường thẳng ở đáp án B trung với \(OH\).
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \({\log _2}b = 4,\,\;{\log _2}c = - 4;\) khi đó \({\log _2}({b^2}c)\) bằng
Trong không gian\(Oxyz,\) cho \(\vec u = 3\vec i - 2\vec j + 2\vec k\). Tọa độ của \(\vec u\) là
Tích các nghiệm thực của phương trình \(\log _2^2x + \sqrt {3 - {{\log }_2}x} = 3\) bằng
Cho hàm số \(y = f(x)\) có bảng biến thiên như hình bên. Số nghiệm của phương trình \(3f(x) - 2 = 0\) là
Cho \(\int\limits_{ - 1}^4 {x\ln \left( {x + 2} \right){\rm{d}}x} = a\ln 6 + \dfrac{5}{b}\) với \(a,b\) là các số nguyên dương. Giá trị \(2a + 3b\) bằng
Họ các nguyên hàm \(F(x)\) của hàm số \(f(x) = 3\sin x + \dfrac{2}{x} - {e^x}\) là
Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng
Mặt phẳng \(\left( P \right):2x - y + 3z - 1 = 0\) có một vectơ pháp tuyến là
Cho hàm số \(f(x)\) thỏa mãn \(f\left( x \right) + 2\sqrt x f'\left( x \right) = 3x{e^{ - \sqrt x }},\forall x \in \left[ {0; + \infty } \right).\) Giá trị \(f(1)\) bằng
Cho hai điểm \(A( - 1;0;1),B( - 2;1;1).\) Phương trình mặt phẳng trung trực của đoạn \(AB\) là
Tập xác định của hàm số \(y = {\left( {{3^x} - 9} \right)^{ - 2}}\) là
Cho hàm số \(y = {\log _a}x,\,\,\,0 < a \ne 1\). Khẳng định nào sau đây đúng?
Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \(\mathbb{R},\) hàm số \(y = f'(x)\) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \(y = f(1 - x)\) là
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\) như hình vẽ. Số giao điểm của \(\left( C \right)\) và đường thẳng \(y = 3\) là:
Cho hai điểm \(A(3; - 1;2)\) và \(B(5;3; - 2).\) Mặt cầu nhận đoạn \(AB\) làm đường kính có phương trình là


