Biết rằng năm 2001, dân số Việt Nam là 78.685.800 người và tỉ lệ tăng dân số năm đó là 1,7% . Cho biết sự tăng dân số được ước tính theo công thức \(S = A.{e^{Nr}}\) (trong đó A: là dân số của năm lấy làm mốc tính, S là dân số sau N năm, r là tỉ lệ tăng dân số hàng năm). cứ tăng dân số với tỉ lệ như vậy thì đến năm nào dân số nước ta ở mức 120 triệu người.
A. 2026
B. 2022
C. 2020
D. 2025
Lời giải của giáo viên
ToanVN.com
Theo bài ta có r = 0,017.A = 78.685.800
Và yêu cầu bài toán là \({S_N} \ge 120.000.000 \Leftrightarrow 78.685.800{e^{0,017N}} \ge 120.000.000\)
\( \Rightarrow N \ge 24,85 \Rightarrow \min N = 25\).
Do đó đến năm 2001 + 25 = 2026 thì thỏa yêu cầu bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \frac{{ax + b}}{{x + c}}\) có đồ thị như hình bên với \(a,b,c \in Z.\) Tính giá trị của biểu thức T = a - 3b + 2c?
.png)
Cho khối hộp chữ nhật có độ dài ba kích thước lần lượt là 4, 6, 8. Thể tích khối hộp chữ nhật đã cho bằng
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng \(\left( \alpha \right):x - 3y - 2z - 6 = 0\). Vecto nào không phải là vecto pháp tuyến của \((\alpha)\)?
Trong không gian Oxyz, điểm nào sau đây thuộc đường thẳng đi qua hai điểm A(1;2;-1) và B(-1;1;1)?
Cho hàm số \(y = - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5\), với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên R?
Tính môđun số phức nghịch đảo của số phức \(z = {\left( {1 - 2i} \right)^2}\)
Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Biết \(SA = a,\;SN = \frac{{a\sqrt 7 }}{2}\), \(\widehat {SCA} = {45^0}\). Tính khoảng cách từ điểm SM tới đường thẳng BC (minh hoạ như hình bên) .
.png)
Giá trị lớn nhất của hàm số \(y = \sqrt { - {x^2} + 3x + 4} \) là bao nhiêu ?
Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là
Trong không gian Oxyz, mặt cầu \((S):{x^2} + {y^2} + {z^2} + 8x - 4y - 6z - 7 = 0\) có tâm và bán kính là:
Có bao nhiêu giá trị nguyên dương của m hàm số \(f\left( x \right) = \frac{1}{3}{x^3} - m{x^2} + \left( {5m + 6} \right)x - 1\) đồng biến trên R.
Cho hình chóp S.ABC có mặt bên SAB là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d từ A đến mặt phẳng (SBC), biết \(BC = a\sqrt3\), AC = 2a.
Cho a, b là các số thực dương thỏa mãn \({\log _4}a + {\log _9}{b^2} = 5\) và \({\log _4}{a^2} + {\log _9}b = 4\). Giá trị ab là:
Cho hình chóp S.ABCD có đáy là tam giác vuông tại A, \(AB = 2a\,\,,\,AC = 4a\,\,,\,SA\) vuông góc với mặt phẳng đáy và SA = a( minh hoạ như hình bên). Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng SM và BC bằng
.png)
Cho hàm số f(x) có \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {x + 2} \right)^5}\). Số điểm cực trị của hàm số đã cho là


